
VoiceXML Reference

Version 1.6
June 2001

2 VOICEXML REFERENCE

BeVocal, Inc.
1380 Bordeaux Drive
Sunnyvale, CA 94089

©2001. BeVocal, Inc. All rights reserved.

VOICEXML REFERENCE 3

Table of Contents

Preface 11

Audience 11

Conventions 11

How to Use This Guide 11

References 12

1. Getting Started 13

VoiceXML 13

Tags and Elements 13

Simple Example 14

Environment 15

Documents 15

Applications 16

Dialogs 16

Properties 18

Grammars 18

Events 21

Links 22

Procedural Logic 22

User Interaction 24

Flow of Execution 24

Explicit Transition 25

Recognition-Triggered Transition 25

Subdialogs 25

4 VOICEXML REFERENCE

2. Forms 27

Form Items 27

Form Item Variables 27

Execution of a Form 28

User Interaction 28

3. Event Handling 31

Predefined Events 31

Default Error Handlers 32

Application-Defined Event Handlers 32

Events in Subdialogs 33

Throwing Events 34

Application-Defined Events 34

4. Fetching Resources 35

Fetch Policies and Properties 35

Cached Files 35

Using Cached Files 36

Fetch Optimization 38

Timeouts 38

Background Audio 38

Fetch Attributes 39

caching 39

fetchaudio 39

fetchhint 40

fetchtimeout 40

maxage 41

maxstale 42

VOICEXML REFERENCE 5

5. Go-Back Facility 43

Retracting User Responses 43

Go-Back Stack 44

Stack Entries 44

Setting Stack Size 45

Go-Back Destinations 46

Menus 46

Mixed-Initiative Forms 46

Field Items 46

Controlling Go-Back Behavior 48

Suppressing Retraction 48

Customizing Go-Back 49

Activating and Deactivating Go-Back 51

Using the Go-Back Facility 51

Setting the Stack Size 51

Using Blocks 51

Using Subdialogs 53

Using Variables 53

6. Tag Reference 55

<assign> 56

<audio> 58

<block> 63

<break> 65

<catch> 67

<choice> 70

<clear> 72

<data> 74

6 VOICEXML REFERENCE

<debug> 76

<disconnect> 78

<div> 80

<dtmf> 81

<else> 83

<elseif> 85

<emp> 87

<enumerate> 88

<error> 90

<exit> 93

<field> 95

<filled> 107

<form> 109

<goto> 112

<grammar> 115

<help> 120

<if> 122

<initial> 124

<link> 126

<log> 129

<menu> 131

<meta> 134

<noinput> 136

<nomatch> 138

<object> 140

<option> 143

<param> 145

VOICEXML REFERENCE 7

<prompt> 147

<property> 151

<pros> 156

<record> 157

<reprompt> 160

<rethrow> 162

<return> 164

<say-as> 166

<sayas> 168

<script> 171

<send> 175

<subdialog> 177

<submit> 181

<throw> 183

<transfer> 185

<value> 188

<var> 193

<vxml> 195

7. Property Reference 197

Prompts 198

bargein 198

hotword 198

timeout 199

Input Modes 199

inputmodes 199

8 VOICEXML REFERENCE

Speech Recognition 199

completetimeout 199

confidencelevel 200

incompletetimeout 200

sensitivity 200

speedvsaccuracy 200

DTMF Recognition 201

interdigittimeout 201

termchar 201

termtimeout 201

Background Audio 201

fetchaudio 201

fetchaudiodelay 202

fetchaudiominimum 202

VOICEXML REFERENCE 9

Fetching 202

audiofetchhint 203

audiomaxage 203

audiomaxstale 203

caching 204

datafetchhint 204

datamaxage 204

datamaxstale 204

documentfetchhint 205

documentmaxage 205

documentmaxstale 205

fetchtimeout 205

grammarfetchhint 205

grammarmaxage 206

grammarmaxstale 206

objectfetchhint 206

objectmaxage 207

objectmaxstale 207

scriptfetchhint 207

scriptmaxage 208

scriptmaxstale 208

File Expiration Time 208

Universal Grammars 208

universals 209

Speech Errors 209

bevocal.maxdialogerrors 209

bevocal.maxerrors 209

10 VOICEXML REFERENCE

Go Back Facility 210

bevocal.goback 210

bevocal.mingoback 210

8. Variable Reference 211

Session Variables 211

session.bevocal.timeincall 211

session.bevocal.version 211

session.iidigits 211

session.telephone.ani 211

session.telephone.dnis 211

session.uui 212

Event-Related Variables 212

_event 212

_message 212

9. Function Reference 213

bevocal.getProperty 213

bevocal.log 213

VOICEXML REFERENCE 11

Preface

VoiceXML is a markup language for writing telephone-based speech applications.
This document describes BeVocal’s VoiceXML, which is compliant with the W3C
VoiceXML Version 1.0 Specification.

Audience

This document is for software developers using the BeVocal Café development
environment. It assumes you are familiar with the basic concepts of HTML.

Conventions

Bold font is used for:

• Headings

Fixed width font is used for:

• Code examples

• Tags and attributes

• Values or text that must be typed as shown

• Filenames and pathnames

Italic fixed width font is used for:

• Variables

Italic font is used for:

• Introducing terms that will be used throughout the document

• Emphasis

How to Use This Guide

The first part of this guide explains who to use VoiceXML features:

• Chapter 1, “Getting Started” introduces VoiceXML and its major features

• Chapter 2, “Forms” describes VoiceXML forms.

• Chapter 3, “Event Handling” describes events that can be thrown during the
execution of a VoiceXML application and how events are handled.

• Chapter 4, “Fetching Resources” explains how an application can control the
way VoiceXML documents and other resources are fetched and cached.

12 VOICEXML REFERENCE

• Chapter 5, “Go-Back Facility” describe the BeVocal Café go-back facility, an
experimental extension to VoiceXML.

A new application developer typically reads these chapters complete and in order.

The remainder of this guide provides reference descriptions of the various
components of the VoiceXML language:

• Chapter 6, “Tag Reference” describes the tags that make up VoiceXML.

• Chapter 7, “Property Reference” describes the properties that can be set to
control the behavior of a VoiceXML application.

• Chapter 8, “Variable Reference” describes predefined variables that are
available in VoiceXML applications.

• Chapter 9, “Function Reference” describes predefined JavaScript functions that
are available in VoiceXML applications.

Application developers typically do not read these chapters from start to finish, but
instead use them to look up information about the various tags, properties, and so
on.

References

For additional or related information, you can refer to:

• VoiceXML Version 1.0 Specification. VoiceXML Forum.

(http://www.w3.org/TR/2000/NOTE-voicexml-20000505)

• VoiceXML Tag Summary. BeVocal.

(http://cafe.bevocal.com/docs/tagSummary/index.html)

• Grammar Reference. BeVocal.

(http://cafe.bevocal.com/docs/grammar/index.html)

• JavaScript Quick Reference. BeVocal.

(http://cafe.bevocal.com/docs/javascript_quick_reference/index.html)

• SpeechObjects Quick Reference. BeVocal.

(http://cafe.bevocal.com/docs/so_quick_reference/index.html)

• Geo API Quick Reference. BeVocal.

(http://cafe.bevocal.com/docs/geo_api/index.html)

http://cafe.bevocal.com/docs/grammar/index.html
http://cafe.bevocal.com/docs/vxml_summary/index.html
http://cafe.bevocal.com/docs/so_quick_reference/index.html
http://www.w3.org/TR/2000/NOTE-voicexml-20000505
http://cafe.bevocal.com/docs/javascript_quick_reference/index.html
http://cafe.bevocal.com/docs/geo_api/index.html

VOICEXML REFERENCE 13

1 Getting Started

VoiceXML is a markup language derived from XML for writing telephone-based
speech applications. Users call applications by telephone. They listen to spoken
instructions and questions and provide input using the spoken word, as opposed to
viewing a screen display and entering information with a keyboard or mouse.

VoiceXML

Just as a web browser renders HTML documents visually, a VoiceXML interpreter
renders VoiceXML documents audibly. You can think of the BeVocal VoiceXML
interpreter as a telephone-based voice browser.

As with HTML documents, VoiceXML documents have web URLs and can be
located on any web server. Yet a standard web browser runs locally on your
machine, whereas the VoiceXML interpreter is run remotely — at the BeVocal
hosting site, for example. And you use your telephone to access the VoiceXML
interpreter.

Tags and Elements

VoiceXML uses markup tags and plain text. A tag is a keyword enclosed by the
angle bracket (< and >) characters. A tag may have attributes inside the angle
brackets. Each attribute consists of a name and a value, separated by an equal (=)
sign; and the value must be enclosed in quotes.

Tags occur in pairs; corresponding to the start tag <keyword> is the end tag
</keyword>. Between the start and end tag, other tags and text may appear.
Everything from the start tag to the end tag, is called an element. For example, the
following three lines constitute a prompt element:

<prompt>
What is your telephone number?

</prompt>

If there are no other tags or text between the start and end tag, a syntactic
shorthand is permitted. You can omit the end tag by replacing the final ">" of the
start tag with "/>". For example, instead of writing a value element as:

<value expr="result"></value>

you can use the shorthand notation:

<value expr="result"/>

Because the syntax specifies the end of each element, the VoiceXML interpreter can
check that the entire document has been received.

If one element contains another, the containing element is called the parent element
of the contained element. The container element is called a child element of its
containing element. The parent element may also be called a container.

14 VOICEXML REFERENCE

GETTING STARTED

Although both HTML and VoiceXML use markup tags, the two languages use tags
differently. Whereas the markup tags in HTML describe how to render the data, the
markup tags in XML (and consequently in VoiceXML) describe the data itself. This
allows an XML interpreter or browser to display the data in whatever way is
appropriate.

BeVocal’s VoiceXML generally complies with the VoiceXML 1.0 Specification. It also
includes several handy extensions that you can use if you choose. VoiceXML Tag
Summary lists any differences between VoiceXML and the standard.

Tip:

VoiceXML conforms to XML standards, so the formats for VoiceXML tags are more
strictly defined than are the formats in HTML. if you are used to HTML and not XML,
remember that all container elements require end tags and all attribute values must
be in quotes.

Simple Example

In VoiceXML, the <form> element is analogous to an HTML form that contains
items for the user to enter. In VoiceXML forms, each logical piece of information to be
collected from the user is identified with a <field> tag.

In the following example, the form collects one piece of information from the user.
Once this information is obtained, execution proceeds to the field’s <filled>
element.

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!-- Phone to city/state example application -->
<form>
<!-- Variable to hold result -->
<var name="result">

<field name="phoneNumber" type="phone">
<prompt>please say your work phone number</prompt>
<filled>
<assign
name="result"
expr="geoApi.PhoneToCityState(phoneNumber)"/>

<prompt>
You work in <value expr="result"/>
The city is <value expr="result.city"/>
The state is <value expr="result.state"/>

</prompt>
</filled>

</field>
</form>

</vxml>

http://cafe.bevocal.com/docs/vxml_summary/index.html
http://cafe.bevocal.com/docs/vxml_summary/index.html

VOICEXML REFERENCE 15

VoiceXML

Other tags used in the example include:

• The <var> tag declares a variable to be used within the form.

• The <prompt> tag requests user input.

• The <assign> tag assigns a value to a variable.

• The <value> tag evaluates an expression.

VoiceXML contains no explicit instructions about how to present the prompt, “please
say your phone number” or how to present the results. In theory, these could be
presented textually on a different kind of browser.

In practice, this document is run as a telephone application and would result in a
conversation such as the following:

Environment

In order to support a telephone interface, the VoiceXML interpreter runs within an
execution environment that includes a telephony component, a text-to-speech (TTS)
speech-synthesis component, and a speech-recognition component.

The VoiceXML interpreter transparently interacts with these infrastructure
components as needed. For example:

• Text strings in output elements are rendered using TTS.

• Telephone connection issues (picking up the incoming call, detecting a hang-up,
transferring a call) are handled by the telephony component.

• Listening to spoken input from the user and identifying its meaning is handled by
the speech-recognition component.

Documents

An executable VoiceXML file is called a document. The VoiceXML interpreter loads a
document file to execute it.

Every VoiceXML document must start with header information that conforms to the
XML standard:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

These headers describe the language in which the document is written:

• The first tag indicates that the document is an XML document.

Application: Please say your work phone number.

User: My work number is 408-907-3200.

Application: You work in Sunnyvale, California. The city is Sunnyvale. The state is
California.

16 VOICEXML REFERENCE

GETTING STARTED

• The second tag identifies the Document Type Definition (DTD), which is used to
validate that the contents represent well-formed VoiceXML.

A DTD describes the format of the data that might appear in an XML document.
That is, the DTD defines the valid tags by specifying what attributes each tag
can have and what child tags or other content each tag can contain.

BeVocal’s VoiceXML is described by its DTD, which is identified in the second
header tag given above.

• The third tag identifies the version of VoiceXML used in this document.

Apart from headers and possibly comments, all the content in a VoiceXML document
is contained within a vxml element, that is, between the <vxml version="1.0">
start tag and the </vxml> end tag.

Applications

A VoiceXML application consists of one or more documents. Any multidocument
application has a single application root document. Each document in an application
identifies the application root document with the application attribute of the
<vxml> tag:

<vxml version="1.0" application="myAppRoot.vxml">

Whenever the interpreter executes a document, it loads that document. If the
document specifies an application root document, that document is also loaded.

You can use an application root document for global items or interactions that you
want to be active throughout the application. For example, suppose the application
root document myAppRoot.vxml declares a variable named company that has an
initial value of BeVocal:

<vxml version="1.0">
<var name="company" expr="BeVocal">
...

This variable has application scope. That is, any document in the application can use
the variable. If the variable’s name is ambiguous, or if you want to make it explicit
that the variable is defined in application scope, you can qualify the variable name by
prepending "application." when you use the variable in other documents:

<value expr="application.company">

Dialogs

Within a document, a user interacts with dialogs, in which the application produces
auditory output, typically asking for information, and the user provides input by
speaking or pressing keys on the telephone. VoiceXML has two kinds of dialogs:
forms and menus.

• A form interacts with the user to fill in a number of fields. Every field has an
associated variable, called its field item variable. Initially, the variable has a value
of "undefined". It is filled in when the speech-recognition engine recognizes a
valid response in a user utterance.

• A menu presents the user with a number of choices; it transitions to a different
dialog based on the user’s selection.

VOICEXML REFERENCE 17

VoiceXML

Forms

The VoiceXML <form> tag defines a form and the <field> tag defines a field in a
form. You specify the name of the field item variable with the name attribute of the
<field> tag. You can use the field variable’s name in expressions to refer to the
stored value.

In the preceding example, the field item variable is named phoneNumber:

<field name="phoneNumber" type="phone">

When the user says the phone number, the number is stored in the phoneNumber
variable. Then the interpreter proceeds to execute the field’s <filled> element.
Here, the phoneNumber variable in the <assign> element is evaluated before
being passed as the parameter to the geoApi.PhoneToCityState utility function
(which converts a phone number to a city/state pair).

<assign
name="result"
expr="geoApi.PhoneToCityState(phoneNumber)"/>

(More information on this BeVocal utility is available in the Geo API Quick
Reference.)

Menus

The <menu> tag defines a menu; each choice consists of a <choice> element. The
next attribute of a <choice> element specifies the destination dialog to which the
interpreter should transition when the user selects that choice. If a <form> or
<menu> element is to be the destination of a transition, it can be given a name with
the an id attribute.

For example, the following menu consists of three choices.

<menu>
<prompt>
Please choose one of <enumerate/>

</prompt>
<choice next="#MovieForm">
local movies

</choice>
<choice next="localBroadcast.vxml#RadioForm">
local radio stations

</choice>
<choice next="http://www.nationTV.org/tv.vxml">
national TV listings

</choice>
</menu>

The prompt in this menu includes an <enumerate> tag. This tag lets you set up a
template for an automatically generated description of the choices. By default, the
<enumerate> template simply lists all the choices. In the above example, the
prompt is “Please choose one of local movies, local radio stations, national TV
listings.”

The destination dialog specified by the next attribute can be in the current
document or in a different document:

• If the user says “local movies”, the interpreter transitions to the dialog named
MovieForm in the same document.

http://cafe.bevocal.com/docs/geo_api/index.html
http://cafe.bevocal.com/docs/geo_api/index.html

18 VOICEXML REFERENCE

GETTING STARTED

• If the user says “local radio stations”, the interpreter transitions to the named
RadioForm in the document localBroadcast.vxml.

• If the user says “national TV listings”, the interpreter transitions to the first dialog
in the document tv.vxml in the national TV web site.

Properties

You can set properties to customize the behavior of the interpreter. The
<property> tag specifies the property to set and the value for the property.

Various properties control how the interpreter behaves when prompting the user for
input, recognizing speech or DTMF input (telephone key tone signals), and fetching
documents and other resources. For additional information, see Chapter 7,
“Property Reference”.

Grammars

The speech-recognition engine uses grammars to interpret user input.

Each field in a form can have a grammar that specifies the valid user responses for
that field. An entire form can have a grammar that specifies how to fill multiple field
item variables from a single user utterance. Each choice in a menu has a grammar
that specifies the user input that can select the choice.

A VoiceXML application can use built-in grammars and application-defined
grammars.

Built-in Grammars

Some basic grammars are built into all standard VoiceXML interpreters. You can
reference a built-in grammar in two ways:

1. From a <field> element, you can use the type attribute to refer to a built-in
grammar. Our Simple Example uses the built-in phone grammar:

<field name="phoneNumber" type="phone">

This means that the speech-recognition engine will try to interpret what the user
says as a telephone number.

2. In a <grammar> element, you can use the src attribute to specify a URL with
the "builtin:" prefix. For example:

<grammar src="builtin:grammar/boolean"/>

The standard built-in types include:

• boolean
• date
• digits
• currency
• number
• phone
• time

Applications cannot modify built-in grammars. However, two built-in grammars,
digits and boolean, can be parameterized. Specifically, you can set limits on the
length of a digit string, and you can set DTMF key presses to mean yes or no.

VOICEXML REFERENCE 19

VoiceXML

The digits and boolean built-in grammars can be parameterized as follows:

You express parameter information using URL-style query syntax of the form:

typeName ? parameter = value

More than one parameter may be specified separated by semicolons.

You can supply parameter information in the type attribute of a <field> element,
for example:

<field type="digits?lenth=10"/>

Similarly, you can supply parameter information in the src attribute of a <grammar>
element, for example:

<grammar
src="builtin:grammar/boolean?y=7;n=9"/>

Application-Defined Grammars

Although the built-in grammars can be useful, you typically need to define your own
grammars, using the <grammar> tag.

An application-defined grammar can be specified in either of two forms:

• Nuance Grammar Specification Language (GSL)

• XML Speech Recognition Grammar Format

See Grammar Reference for additional information about grammars.

A simple grammar can be defined in the document. An inline grammar is defined
within the <grammar> element itself. For example, the following inline GSL grammar
matches the words “add” and “subtract”.

<field name="operator">
<grammar> [add subtract] </grammar>
...

With this grammar, if the user says “add,” the field item variable operator is set to
"add".

More complex grammars can be written externally. An external grammar is defined
in a file separate from the VoiceXML document file and is referenced by the src
attribute of the <grammar> element. For example, the following field uses a
grammar rule named Colors in an external GSL grammar defined in the file
partGrammar.grammar.

<field name="part">
<grammar
src="http://www.mySite/partGrammar.grammar#Colors"/>

...

Grammar Parameters

boolean • y - The DTMF key press for an affirmative response.
• n - The DTMF key press for a negative answer.

digits • minlength - The minimum number of digits in a valid
response.

• maxlength - The maximum number of digits in a valid
response.

• length - The exact number of digits in a valid response.

http://cafe.bevocal.com/docs/grammar/index.html

20 VOICEXML REFERENCE

GETTING STARTED

The named rule (Colors in the preceding example) is called the root rule for the
grammar. The specified file may include other grammar rules, which may be used as
subgrammars of the root rule.

The grammar for a menu choice can be specified explicitly with a <grammar> child
of the <choice> element. Alternatively, a grammar can be generated automatically
from the choice text. The user can say any of the words in the choice text to select
that choice. In the preceding example, the user could say “TV listings” or just “TV” to
select the third choice.

<menu>
...
<choice ...>
national TV listings

</choice>
</menu>

However, the words must be spoken in the correct order, so “listings, TV” would not
work.

Active Grammars

The speech-recognition engine uses active grammars to interpret user input. A field
grammar is active whenever the interpreter is executing that field. A menu-choice
grammar is active whenever the interpreter is executing the containing menu. A form
grammar is active whenever the interpreter is executing the containing form.

A form grammar or the collection of choice grammars in a menu can optionally be
made active at higher scopes:

• A grammar with document scope is active whenever the interpreter is executing
any dialog in the document.

• A grammar with application scope is active whenever the interpreter is executing
any document in the application.

If the interpreter is executing one dialog and the user’s input matches an active
grammar for a different dialog, control transfers to the latter dialog. If the grammar is
in application scope, control might transfer to a dialog in a different document.

Note that within a field, you can temporarily turn off grammars from higher scopes by
setting the field’s modal attribute to "true".

Universal Grammars

Universal grammars are an extension to the BeVocal VoiceXML 1.0 platform.

A universal grammar is one that is can be active all the time—that is, whenever the
interpreter is executing the application. The interpreter’s predefined "help",
"exit", "cancel" and "goback" grammars are universal grammars.

The application can declare an application-defined grammar to be universal by
naming the grammar with the universal attribute of the <grammer> tag. For
example, the following element defines a universal grammar named "mainmenu":

<grammar universal="mainmenu">
main menu

</grammar>

In VoiceXML 1.0 applications, all universal grammars are activated by default. The
application can choose to deactivate some or all universal grammars by setting the

VOICEXML REFERENCE 21

VoiceXML

universals property. This property specifies which of the universal grammars
should be active; all other universal grammars are deactivated.

For example, you might choose to deactivate the "exit" and "cancel" grammars
in your application:

<grammar universal="mainmenu">
main menu

</grammar>
<!-- Make mainmenu, help, and goback active -->
<!-- but deactivate exit and cancel. -->
<property
name="universals"
value="help mainmenu goback"/>

You can deactivate all universal grammars by specifying the value "none":

<property
name="universals"
value="none" />

All universal grammars are deactivated by default when the vxml tag’s version
attribute equals 2.0. The application can activate some or all universal grammars by
setting the universals property. To activate all universal grammars, you can put
the following element in your application root document:

<property
name="universals"
value="all" />

Events

The VoiceXML interpreter can throw a number of predefined events based on errors,
telephone disconnects, or user input. For example:

• A no-input event is thrown if the user does not respond to a question.

• A no-match event is thrown when the user does not respond intelligibly—that is,
when the user’s utterance does not match any active grammar.

• A help event is thrown when the user requests help.

• An error event is thrown when any kind of error occurs.

An application can define additional events and can use a <throw> element to
throw an event of a specified kind.

An application can catch an event and take the appropriate response in an event
handler. A <catch> element is a general-purpose event handler; its event attribute
specifies the kinds of event that it handles. Additional event-handling tags are
syntactic shorthand: <noinput>, <nomatch>, <help>, and <error>. Each of
these shorthand tags catches one type of event, indicated by its name. For example,
a <nomatch> element catches no-match events.

When an event is thrown, the associated event handler, if it exists, is invoked. If the
handler did not cause the application to terminate, execution resumes in the element
that was being executed when the event was thrown.

For more information, see Chapter 3, “Event Handling”.

22 VOICEXML REFERENCE

GETTING STARTED

Links

A link specifies a grammar that is independent of any particular dialog.

A <link> element defines a link. Each <link> element contains a <grammar>
element. A link’s grammar is active in the scope of the element that contains the link.
For example, if the link is in a form, its grammar is active when the interpreter is
executing that form. If a link is under a <vxml> element, its grammar has document
scope; if the link is in the application root document, its grammar has application
scope. Links in a <vxml> element can implement global behaviors.

A link can specify one of two possible actions to take if the speech-recognition
engine detects a match its grammar:

• The link can cause a transition to a different location; in that case, its next
attribute specifies the destination of the transition. Links, like menu choices, can
cause transitions to other dialogs or documents.

• The link can throw an event; in that case, its expr attribute specifies the event to
throw. After the event is handled execution resumes with the element that was
being executed when the link grammar was matched.

For example, the following link is defined at document level, so its grammar
(specified in GSL) is active whenever the interpreter is executing any dialog in the
document. If the user says “operator,” the link transfers control to a different
document.

<vxml>
<link next="operator_xfer.vxml">
<grammar> operator </grammar>

</link>
...

Procedural Logic

You can use procedural logic, called executable content, within a few basic
elements: <block>, <filled>, and event handlers. Within executable content, you
can declare and assign values to variables, use simple conditional logic, output
speech or audio to the user, or run a JavaScript.

Variables

Variables are declared by the <var> tag. Declarations can appear in a document, a
form, or executable content. The <var> tag can optionally specify the variable’s
initial value; if it doesn’t, the variable will be initialized to "undefined".

A variable has the scope of the element that contains the declaration:

• A variable has document scope if it is declared in a <vxml> element, or in a
<block> or event handler that is a child of the <vxml> element. If the
document is the application root document, then the variable has application
scope.

You can refer to a variable x with document scope either as x or document.x
(for clarity or to resolve ambiguity). If the variable is in the application root
document, then you can refer to it in other documents as application.x.

• A variable has dialog scope if it is declared in a <form> element, or in a
<block> or <filled> element or an event handler that is a child of a <form>
element.

You can refer to a variable x with dialog scope either as x or dialog.x.

VOICEXML REFERENCE 23

VoiceXML

• A variable has an anonymous scope, local to a field, if it is declared in an event
handler or <filled> element that is a child of a <field> element.

If a <var> element specifies a variable that is already in scope, it does not declare a
new variable with the same name, but simply assigns a value to the existing variable.
If the <var> element has an expr attribute, the variable is assigned the specified
value; otherwise, the variable is assigned the value "undefined".

You can set a variable’s value with the <assign> tag.

VoiceXML variables are in all respects equivalent to JavaScript variables—they are
part of the same variable space. For additional information, see “Scripts” on
page 23.

Conditional Logic

You can use an <if> element to execute a block of code if a condition is satisfied.
Within that element, you can use a sequence of <elseif> elements to execute
alternative blocks of code if all previous conditions failed and the condition of the
<elseif> element is satisfied. You can use an <else> element to execute and
alternative block of code if all previous conditions failed.

The conditions in <if> and <elseif> elements are expressed as Boolean-valued
JavaScript expressions.

Output

A <prompt> or <reprompt> element generates speech output; an <audio>
element plays a prerecorded audio clip.

Prompts can appear in executable contents, as well as in elements for collecting
user input. Anywhere a <prompt> is valid, text is interpreted as a prompt even if the
enclosing <prompt> and </prompt> tags are omitted.

A field item and the <initial> item of a mixed-initiative form has a prompt counter
that lets you play different prompts if the user revisits the item several times. For
example, you may want to play shorter descriptions after the first or second time the
user is prompted for the same information. The prompt counters are reset on each
form invocation.

Scripts

A <script> element executes a JavaScript, which is run in the scope of the parent
element. A <script> element can also define functions that can be called by
JavaScript expressions in the same scope.

VoiceXML variables are equivalent to JavaScript variables and are part of the same
variable space. VoiceXML variables can be used in a script just as variables defined
in a <script> element can be used in VoiceXML. Declaring a variable using a
<var> element is equivalent to using a var statement in a <script> element.

24 VOICEXML REFERENCE

GETTING STARTED

User Interaction

VoiceXMLsupports both application-directed and mixed-initiative interactions with a
user.

In an application-directed (or simply directed) interaction, the application prompts for
the information it needs and the user supplies the requested information by
answering the prompts. The application controls the interaction; the user cannot
volunteer information. To be more accurate, the application does not understand
volunteered information:

• If the application is executing a form, the only active grammar is the one for the
current field of the form. The only valid user input is one that provides a value for
the current field’s variable.

• If the application is executing a menu, the only active grammars are the
grammars of the menu’s choices. The only valid user input is one that selects a
choice for the current menu.

In a mixed-initiative interaction, the user and the application both participate in
determining what the application does next. A single utterance from the user may
provide input for multiple field item variables in a form. In response to a prompt in
one dialog, the user may provide input that matches a grammar defined in a different
form. When this happens, the interpreter transitions to that dialog and fills its field
item variables from the user input. Similarly, the user may provide input that selects a
choice from a different menu or that matches a link grammar, causing a transition to
the destination specified by that choice or link.

If an application does not use links or grammars with document or application scope,
it may still include mixed-initiative forms. A mixed-initiative form includes a form
grammar. It can include an <initial> element to control the initial interaction in
the form. This element can request user input or perform other non-interactive
initialization tasks. In response to a prompt from the <initial> element, the user
could provide input that fills in multiple field item variables. If the form prompts for
individual fields, any user input that matches the form grammar is valid—even if that
input does not fill in the field for which the user was just prompted.

Note: Fewer speech-recognition errors occur in directed interactions than in
mixed-initiative interactions.

Flow of Execution

Execution within a VoiceXML document flows in document order until a dialog (form
or menu) is entered. Execution flows from the current dialog to a different dialog or
document, based on either:

• An explicit transition statement in the current dialog.

• Speech recognition in the current dialog that causes a transition to a different
dialog.

In addition, execution can temporarily leave the current dialog to execute a
subdialog, returning to the current dialog when execution of the subdialog is
complete.

VOICEXML REFERENCE 25

Flow of Execution

If the current dialog completes execution without transitioning to a different location,
the application exits. In addition, you can use an <exit> element to end the
application explicitly.

Explicit Transition

You can set up explicit transitions to other dialogs or documents in your application
using <goto> or <submit> tags. These transition elements can be placed inside
<block> or <filled> elements or event handlers.

The <goto> element lets you transition to another field item in the current form, to
another dialog in the current document, or to another document. When you make the
transition to the new location, the local variables from the old form or document are
lost. This happens even if you transition to the same form you were in before.
However, the values of local variables are not affected when you use <goto> to
transition between items within a form.

The <submit> tag lets you pass values to another document using an HTTP GET
or POST request. Since you use a URL to specify the next document, it need not be
a VoiceXML document; for example, it could be a CGI script document.

Recognition-Triggered Transition

User input to a dialog may cause a transition to a different location:

• If the speech-recognition engine matches a grammar with document or
application scope that is defined in a different dialog, the interpreter transitions
to that dialog.

• If the speech-recognition engine matches the grammar of a <link> element
that has a next attribute, the interpreter transitions to the destination specified
by the next attribute.

Subdialogs

A subdialog is a reusable VoiceXML dialog that you can pass data to and get return
values from:

• The current dialog passes control to a subdialog with a <subdialog> element.
It can pass data to the subdialog with <param> elements inside the
<subdialog> element.

• A subdialog returns control to the calling dialog with the <return> element. it
can pass values back using the namelist attribute of the <return> element.

26 VOICEXML REFERENCE

GETTING STARTED

VOICEXML REFERENCE 27

2 Forms

The main elements of a document (within the <vxml> element) are forms.
VoiceXML forms are analogous to Web forms; you use them to collect (voice) input
from the user.

Form Items

So far, the only form item we’ve discussed is the <field> element. However, forms
can contain either field items or control items:

Field items are elements for collecting user input or results. Field item is any one of
the following:

• A field, defined with the <field> tag, asks the user for a piece of information.

• A record item, defined with the <record> tag, records what the user says
(perhaps for a voicemail message);

• A object item, defined with the <object> tag, invokes a complex, reusable
speech component that can gather user input.

• A subdialog, defined with the <subdialog> tag, invokes a reusable dialog.

• A transfer item, defined with the <transfer> tag, transfers the user to another
telephone number.

Control items are tags that can contain procedural items for audio output or
computation. A control items is either of the following:

• A block, defined with the <block> tag, is a container for procedural elements.

• An initial item, defined with the <initial> tag, controls the initial interaction of
a mixed-initiative form.

Form Item Variables

Each form item has an associated form item variable. When a form is entered, all
form item variables are initially undefined. When a form item is visited, its variable is
set to the result of interpreting that form item. For example, visiting a <block>
element sets its form item variable "true". The form item variable for a field item is
also called a field item variable; after a field item is visited, its field item variable is
set to the value collected from the user.

28 VOICEXML REFERENCE

FORMS

Execution of a Form

Within a form, the flow of execution is governed by the Form Interpretation Algorithm
(FIA), a looping algorithm. One each iteration, the FIA selects the form item to visit
next.

A form item’s guard conditions determine whether it can be selected on a given
iteration:

• The value of the form item variable must be "undefined".

• The value of any cond expressions contained in the form item must evaluate to
"true".

Both guard conditions must be met in order for a form item to be selected. The FIA
examines the form items in document order, selecting the first one whose guard
conditions are met. If the guard conditions for all form items fail, the form (and the
application) exits.

By default, every form item variable has an initial value of "undefined" so every
form item that does not specify a cond expression is eligible for selection. After the
form item is visited, its variable is set to a value, which prevents the same form item
from being selected again on the next iteration.

You can explicitly control the execution of any form item if you give its variable a
name and an initial value other than "undefined". Doing so prevents the form item
from being eligible for selection until you explicitly use the <clear> tag to reset its
variable. Typically, field item variables are given names but control item variables are
not.

User Interaction

User interaction with a form can be directed or mixed initiative.

A directed form has no form grammar, only grammars for its individual fields. A
directed form gives the user explicit directions about what to say and when. For
example, a directed form might result in the following dialog:

A form that includes its own grammar is a mixed-initiative form. The form grammar
allows several field item variables to be filled in as a result of a single user utterance.
A mixed-initiative form allows the user to speak more naturally. For example, a
mixed-initiative form might result in the following dialog:

Application: Would you like to buy, sell, or receive a stock quote?

User: Get a quote.

Application: What stock or stocks would you like a quote for?

User: Intel.

Application: Stock assistant here. How can I help you?

User: I’d like to get a quote for Intel.

VOICEXML REFERENCE 29

User Interaction

One disadvantage of mixed-initiative forms is that form grammars are more
complicated and can result in more recognition errors.

The grammar for a field sets a value for the field’s variable. For example, the
grammar in the following field, specified in GSL, assigns the value "june" to the
variable month if the user says “June.”

<field name="month">
<grammar>
[june july august]

</grammar>
<field>

The grammar for a form must specify both the field item variable to be set by a
grammar rule and the value for that variable. For example, the GSL grammar in the
following file, foo.grammar, sets values for two variables, quantity and fruit.

Main [
(?Quantity Fruit)
(Quantity ?Fruit)
(Quantity Fruit)]

Quantity [
one {<quantity "one">}
two {<quantity "two">}]

Fruit [
[apple apples] {<fruit "apples">}
[orange oranges] {<fruit "oranges">}]

This grammar is used by the following mixed-initiative form:

<form id="foo">
<initial>
<grammar src="foo.grammar#Main"/>
How many apples or oranges do you want?

</initial>
<!-- If user doesn’t respond to initial -->
<!-- prompt, ask for each field -->
<field name="fruit"/>
<grammar src="foo.grammar#Fruit"/>
Do you want apples or oranges?

</field>
<field name="quantity">
<grammar src="foo.grammar#Quantity"/>
How many <value expr="fruit"/> do you want?

</field>
</form>

30 VOICEXML REFERENCE

FORMS

VOICEXML REFERENCE 31

3 Event Handling

The VoiceXML interpreter can throw a number of predefined events based on errors,
telephone disconnects or user requests. You can also throw events you define that
are specific to your application. When an event is thrown, the associated event
handler, if it exists, is invoked. Then execution resumes in the element that was
being executed when the event was thrown.

Predefined Events

The following standard events are predefined:

• exit - The user asked to exit.

• help - The user asked for help.

• noinput - The user did not provide timely input.

• nomatch - The user did not provide meaningful input.

• cancel - The user asked to cancel the prompt that is playing.

• telephone.disconnect.hangup - The user hung up.

• telephone.disconnect.transfer - The user’s call was transferred.

The following additional events are defined as BeVocal extensions:

• goback - User wants to retract the last response and go back to an earlier part
of the interaction.

The following standard errors are predefined:

• error.badfetch - An error occurred while the interpreter was fetching a
document or resource.

• error.semantic - A runtime error occurred in the VoiceXML code.

• error.noauthorization - The user is not authorized to perform the
requested action.

• error.unsupported.format - The requested resource format is not
supported.

• error.unsupported.element - The requested element is not supported (for
example, error.unsupported.subdialog).

The following additional errors are defined as BeVocal extensions:

• error.bevocal.maxdialogerrors_exceeded - The maximum number of
speech errors was exceeded in a particular execution of a particular form.

• error.bevocal.maxerrors_exceeded - The maximum number of speech
errors was exceeded during the call.

32 VOICEXML REFERENCE

EVENT HANDLING

Default Error Handlers

The BeVocal environment provides the following default event handlers the
predefined events and errors:

• exit - Exit the interpreter.

• help - Play a default audio help message and reprompt. The help message
says: “No help available right now.”

• noinput - Play a default audio message and reprompt. The message says: “I’m
sorry, I didn’t hear you.”

• nomatch - Play a default audio nomatch message and reprompt. The says: “I’m
sorry, I didn’t understand you.”

• cancel - Stop audio.

• error - Exit the interpreter.

• telephone.diconnect.hangup - Exit the interpreter.

• All others - Play a default audio error message and exit the interpreter.

Application-Defined Event Handlers

Although the system provides default handlers for the predefined events, you can
override these handlers by providing your own event handlers in any element that
can throw an event. The <catch>, <error>, <help>, <noinput>, and
<nomatch> elements are event handlers.

An element in which an event may be thrown also inherits event handlers defined in
its ancestor elements. For example, an event thrown within a field element may be
caught by a handler in that element, or in its form, or in its document, or in its
application. This inheritance of event handlers allows you to provide consistency in
event handling by defining handlers at a higher level.

Form items contain event counters that let you respond differently if the same event
is thrown multiple times. For example, you may want to provide more details each
time the user asks for help. The event counters are reset on each form invocation.

When an event occurs, its counter is used to select applicable event handlers. All
handlers in the scope in which the event occurred and its containing scopes are
considered. A handler for the event is eligible if its count attribute is less than or
equal to the event’s counter. Those eligible reprompt. The with the highest count
are selected as applicable. The applicable handlers are ordered by scope, with the
innermost event handlers first; within a given scope, the applicable handlers are
examined in the order in which the occur in the VoiceXMLdocument. The first
applicable handler in this ordering is selected to handle the event.

You can set up event handlers that catch all events with a given prefix (for example,
error.unsupported). Note, however, that the interpreter selects a handler based
on count, scope, and document order only. A more specific handler does not take
precedence. For example, if an error.unsupported.format event is thrown and
the first applicable handler is for all events beginning with the prefix
error.unsupported, that handler will be invoked even if the next applicable
handler is for the specific event error.unsupported.format.

VOICEXML REFERENCE 33

Events in Subdialogs

Within an event handler, the _event variable contains the name of the event
currently being handled; the _message variable contains the message string that
provides additional information about the event. If no message was supplied when
the event was thrown, the _message variable is "undefined".

Tips:

• Always set up default <help>, <nomatch>, and <noinput> messages of your
own, at top level scope. For example:
<vxml>
<help>
I’m sorry. There’s no help available here.

</help>
<noinput>
I’m sorry. I didn’t hear anything.
<reprompt/>

</noinput>
<nomatch>
I didn’t get that.
</reprompt>

</nomatch>
...

• If you want to execute both an event handler in an inner scope and a handler for
the same event in an outer scope, the inner handler can use a <rethrow>
element to rethrow the event.

Events in Subdialogs

When a subdialog throws an event, the result depends on whether the subdialog is
modal. Subdialogs are modal by default; a subdialog can be made non-modal by
setting the modal attribute to "false".

• If an event is thrown within a modal subdialog and no handler for the event is
found in the subdialog’s execution context, a fatal error occurs, causing the
interpreter to exit.

• If an event is thrown within a non-modal subdialog and no handler for the event
is found in the subdialog’s execution context, the interpreter causes the
subdialog’s context to return and rethrows the event in the calling context,
restarting the search for the event handler in that context.

34 VOICEXML REFERENCE

EVENT HANDLING

Throwing Events

An application can throw events as follows:

• A <throw> element throws an event; it can occur within executable content, that
is, in a block or <filled> element, or an event handler.

• A <link> element can specify an event to be thrown when the link’s grammar is
matched.

• A <choice> element in a menu can specify an event to be thrown when the
choice’s grammar is matched.

• A <return> element in a subdialog can specify an event to be thrown after
control returns to the calling dialog.

Application-Defined Events

An application can define additional events implicitly. If an element that throws an
event specifies an event other than one of the predefined events, it implicitly defines
the specified event. For example, the following tag implicitly defines an event named
myEvent and throws that event.

<throw event="myEvent"/>

An application can use a <catch> element to catch and handle an
application-defined-event. For example:

<catch event="myEvent">
...

</catch>

VOICEXML REFERENCE 35

4 Fetching Resources

Currently, two protocols are supported for fetching resources or documents: “http”
and “https” (secure HTTP). When the VoiceXML interpreter needs to fetch resources
or documents specified by a URL, its behavior is governed by the application’s fetch
policies. The fetch policies cover caching, optimization and timing out of fetch
operations, and the use of background audio during fetch operations. All policies
have default settings.

An application can change any default setting with a <property> element that sets
a property corresponding to the policy to be changed.

• A property set in the <vxml> element of a single-document application or the
application root document of a multidocument application sets the policy for that
document and the application, overriding the default setting.

• A property set in the <vxml> element of a non-root document of a
multidocument application sets the policy for that document, overriding the
setting for the application.

• A property set in a <form> or <menu> element sets the policy for that dialog,
overriding the setting for the containing document.

• A property set in a form item sets the policy for that form item, overriding the
setting for the containing form.

Any tag that requests a fetch operation includes attributes that can be set to override
the current policy settings during that fetch operation only.

Fetch Policies and Properties

The VoiceXML interpreter uses fetch policies to control its behavior when it fetches
resources or documents. The fetch policies govern the following aspects of fetching:

• Caching a fetched file and using cached files instead of repeating fetch
operations

• Optimizing fetch operations

• Allowing fetch operations to time out

• Using background audio during fetch operations

The following sections describe the policies and their default settings, and they also
list the properties that can be used to set each policy. For a detailed description of
the various properties, see Chapter 7, “Property Reference”.

Cached Files

A file that is fetched can be cached so that it is available for use in the near future
without having to be fetched again. VoiceXML document files, grammar files, audio
files, object files, and script files can all be cached.

36 VOICEXML REFERENCE

FETCHING RESOURCES

Most files are cached until they expire. However, if the VoiceXML interpreter
encounters any of the following HTTP headers, it does not cache the document:

• Expires: 0
• Pragma: no-cache
• Cache-control: no-cache
• Cache-control: no-store

Either of the following two HTTP headers can specify how long to keep the
document in the cache, either N seconds for the first header or until the specified
date for the second:

• Cache-control: max-age N
• Expires: date

If headers do not specify when a cached file expires, the file expires immediately. It
is still stored in the cache. If the same file is needed in the future, properties control
whether the cached file is used as is, revalidated with a “get if modified”, or refetched
unconditionally.

Using Cached Files

If the interpreter needs a resource that is not in the cache, it fetches and caches the
resource. If t a copy of the resource that is in the cache, three policies govern
whether the interpreter uses the cached copy:

• The maximum age for files
• The caching policy for files (VoiceXML 1.0 only)
• The maximum stale time for files

You can set properties to control these policies.

Maximum Age

An application can specify the maximum age of cached files that the application will
use. An unexpired cached file whose age does not exceed the maximum age will be
used; a cached file that is older that the maximum will be refetched.

The following properties specify the maximum age, in seconds, for files of the
specified kinds:

• audiomaxage - audio files
• datamaxage - XML data files
• documentmaxage - VoiceXML document files
• grammarmaxage - grammar files
• objectmaxage - object files
• scriptmaxage - script files

All these properties are extensions to the BeVocal VoiceXML 1.0 platform.

No default is set for these properties. If you set a maximum-age property to a
non-zero value, you ensure that:

• The interpreter uses an unexpired resource whose age is less than or equal to
the maximum age—without doing a “get if modified” to verify that the cached file
is up to date.

• The interpreter fetches a fresh copy of a resource whose age is more than the
maximum age—even if the cached file has not yet expired.

For example, suppose you fetch a VoiceXML document file that expires in 60
seconds, and after 40 seconds you need the same file. If documentmaxage is set to

VOICEXML REFERENCE 37

Fetch Policies and Properties

30, the application will refetch the document file; if documentmaxage is set to 60, it
will use the cached file.

You can set a maximum-age property to 0 to ensure that a fresh copy is retched if
the resource has been modified since it was last fetched.

If a resource is within the maximum age but the cached file has expired, the relevant
maximum-stale-time policy determines whether the interpreter uses the expired
cached file.

Caching

In a VoiceXML 1.0 application, when the relevant maximum-age property is not set,
the caching policy determines whether the interpreter uses an unexpired cached
copy of a file.

The caching property specifies the caching policy for all kinds of files:

• If the caching property is "fast" (the default), the cached copy is used.

• If the caching property is "safe", the interpreter does a “get if modified” to
update the cached file, if necessary.

If the cached file has expired, the relevant maximum-stale-time policy determines
whether the interpreter uses the expired cached file.

Note: The caching property is ignored when the vxml tag’s version attribute
equals 2.0, and an unexpired cached copy of a file is used if the relevant
maximum-age property is not set.

Maximum Stale Time

An application can specify the maximum stale time during which expired files will be
used without being refetched. The maximum stale time for a file is the time by which
its expiration time can be exceeded. Within this allowable stale time, the expired
cached file will still be used; if the file is needed after its maximum stale time has
been exceeded, the file will be refetched.

The following properties specify the maximum stale time, in seconds, for files of the
specified kinds:

• audiomaxstale - audio files
• datamaxstale - XML data files
• documentmaxstale - VoiceXML document files
• grammarmaxstale - grammar files
• objectmaxstale - object files
• scriptmaxstale - script files

The default for audiomaxstale is 300 seconds (5 minutes); the default for the
other properties is 0. All these properties are extensions to the BeVocal VoiceXML
1.0 platform.

The maximum stale time is relevant in when the expired file is within the maximum
age and when no maximum age is set for the file. If the number of seconds since the
the cached file expired is less than or equal to the maximum stale time, the cached
file is used. If the file has been expired for longer than the maximum stale time, the
interpreter does a “get if modified” to update the cached file, if necessary.

This property allows you to specify that an expired file that is “not too stale” to be
used. For example, if you do not have direct server-side control of the expiration
dates of large static files, you might use this property to avoid performing repeated
gets on the files.

38 VOICEXML REFERENCE

FETCHING RESOURCES

Fetch Optimization

The interpreter can attempt to optimize dialog interpretation by prefetching files that
might be needed or by streaming fetched audio files.

By default, the interpreter loads a VoiceXML document file only when it is needed. It
can, however, prefetch grammar, audio, object, or script files, and it can stream
audio files.

Note: The ability to stream audio files in a Beta feature.

An application can control whether the interpreter may attempts to optimization fetch
operations with the following properties that set the policy for files of the specified
kinds:

• audiofetchhint - audio files
• datafetchhint - XML data files
• documentfetchhint - VoiceXML document files
• grammarfetchhint - grammar files
• objectfetchhint - object files
• scriptfetchhint - script files

Timeouts

By default, the interpreter waits up to one minute for a resource or document to be
fetched. The application can control this behavior with the fetchtimeout property,
which sets the timeout period for fetch operations. The interpreter waits for the
specified timeout period. Then, if the resource still has not been returned, the
interpreter throws an error.badfetch event.

Background Audio

By default, the user does not hear any audio output while the interpreter is fetching a
file of any kind.

The application can change this behavior with the fetchaudio property, which
specifies a “background audio” file to be played while the interpreter fetches a
VoiceXML document or object file.

Note: Background audio is never played while the interpreter fetches a grammar,
audio, or script file.

When a background audio file is specified for a fetch operation, the fetching of that
background audio file is governed by the caching, audiofetchhint,
audiomaxage, audiomaxstale, and fetchtimeoput properties that are in
effect at the time of the fetch. The following properties govern the playing of the
background audio clip:

• fetchaudiodelay - the amount of time to wait after a VoiceXML download is
started before background audio clip is played.

• fetchaudiominimum - the minimum time interval to play the background
audio clip, once started, even if the fetch result arrives in the mean time.

Both these properties are extensions to the BeVocal VoiceXML 1.0 platform.

VOICEXML REFERENCE 39

Fetch Attributes

Fetch Attributes

Currently, two protocols are supported for fetching resources or documents: “http”
and “https” (secure HTTP). When the VoiceXML interpreter needs to fetch resources
or documents specified by a URL, its behavior is governed by the values of six
attributes of the associated tags.

• caching
• fetchaudio
• fetchhint
• fetchtimeout
• maxage
• maxstale

caching

The caching attribute specifies the caching policy for the resource being fetched. It
can be set to either of the following values:

• safe - Ensures the most recent version of the resource will be fetched.
• fast - Uses a cached copy of the file if it has not expired.

Note: This attribute is used only in a VoiceXML 1.0 application when the maxage
attribute does not have a value and the cache contains an unexpired copy of the
resource.

Optional. If not specified, the current value of the caching property is used.

The following tags can have a caching attribute:

• <audio>
• <choice>
• <data>
• <dtmf>
• <goto>
• <grammar>
• <link>
• <object>
• <script>
• <subdialog>
• <submit>

Note: The caching property is ignored when the vxml tag’s version attribute
equals 2.0, and an unexpired cached copy of a file is used if the maxage attribute
does not have a value.

fetchaudio

The fetchaudio attribute specifies the URL of an audio clip to play while the
VoiceXML document is being fetched.

Optional. If not specified, the current value of the fetchaudio property is used.

When a background audio file is specified for a fetch operation,

• The fetching of the background audio file is governed by the caching,
audiofetchhint, audiomaxage, audiomaxstale, and fetchtimeoput
properties that are in effect at the time of the fetch.

40 VOICEXML REFERENCE

FETCHING RESOURCES

• The playing of the audio clip is governed by the fetchaudiodelay and
fetchaudiominimum properties that are in effect at the time of the fetch.

The following tags can have a fetchaudio attribute:

• <choice>
• <goto>
• <link>
• <object>
• <send>
• <subdialog>
• <submit>

fetchhint

The fetchhint attribute specifies whether the interpreter can attempt to optimize
dialog interpretation by prefetching the resource. This property can be set to one of
the following values:

• prefetch - Fetch the resource when the page is loaded.
• safe - Fetch the resource only when it is needed.
• stream - For audio files only. Stream the fetched audio file, that is, process data

in the file as it arrives without waiting for the full retrieval.

Note: The ability to stream audio files in a beta feature.

Optional. Default is the current value of the relevant property:

• audiofetchhint for audio files
• datafetchhint for XML data files
• documentfetchhint for VoiceXML document files
• grammarfetchhint for grammar files
• objectfetchhint for object files
• scriptfetchhint for script files

The default for the documentfetchhint property is "safe"; the default for the
other properties is "prefetch".

The following tags can have a fetchhint attribute:

• <audio>
• <choice>
• <data>
• <dtmf>
• <goto>
• <grammar>
• <link>
• <object>
• <script>
• <subdialog>

fetchtimeout

The fetchtimeout attribute specifies the interval to wait for the resource to be
returned before throwing a error.badfetch event. The value is a time interval
expressed as an unsigned number followed by "s" for time in seconds; "ms" for
time in milliseconds (the default).

Optional. If not specified, the current value of the fetchtimeout property is used.

VOICEXML REFERENCE 41

Fetch Attributes

The following tags can have a fetchtimeout attribute:

• <audio>
• <choice>
• <data>
• <dtmf>
• <goto>
• <grammar>
• <link>
• <object>
• <script>
• <send>
• <subdialog>
• <submit>

maxage

The maxage attribute specifies the maximum acceptable age, in seconds, of the
cached resource. The value is a time interval expressed as an unsigned number
followed by "s" for time in seconds (the default); "ms" for time in milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

Optional. Default is the current value, if any, of the relevant property:

• audiomaxage for audio files
• datamaxage for XML data files
• documentmaxage for VoiceXML document files
• grammarmaxage for grammar files
• objectmaxage for object files
• scriptmaxage for script files

When no value is set for this attribute, the caching attribute controls whether an
unexpired cached file is used.

The following tags can have a maxage attribute:

• <audio>
• <choice>
• <data>
• <goto>
• <grammar>
• <link>
• <object>
• <script>
• <subdialog>
• <submit>

42 VOICEXML REFERENCE

FETCHING RESOURCES

maxstale

The maxstale attribute specifies the maximum acceptable time, in seconds, during
which an expired cached resource can still be used. The value is a time interval
expressed as an unsigned number followed by "s" for time in seconds (the default);
"ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

Optional. Default is the current value of the relevant property:

• audiomaxstale for audio files
• datamaxstale for XML data files
• documentmaxstale for VoiceXML document files
• grammarmaxstale for grammar files
• objectmaxstale for object files
• scriptmaxstale for script files

The following tags can have a maxstale attribute:

• <audio>
• <choice>
• <data>
• <goto>
• <grammar>
• <link>
• <object>
• <script>
• <subdialog>
• <submit>

VOICEXML REFERENCE 43

5 Go-Back Facility

The BeVocal Café go-back facility allows the user to retract the last response or to
transition back to the last location in an application.

Note: The go-back facility is an experimental extension to VoiceXML; its
implementation and behavior are subject to change. BeVocal is providing the current
implementation before the feature has been standardized so that our developers
may provide feedback. If this capability becomes a standard part of a future version
of VoiceXML, the BeVocal implementation will change as necessary to match the
VoiceXML standard.

Retracting User Responses

If the go-back facility is enabled, the user can retract the last response to a
VoiceXML application by saying “go back.” After the interpreter “removes” the user’s
response, it prompts for the information again.

For example, the following form asks for the user’s home and work phone numbers:

<form>
<field name="home" type="phone">
<prompt>
What is your home phone number?

</prompt>
</field>
<field name="work" type="phone">
<prompt>
What is your work phone number?

</prompt>
</field>

</form>

Suppose a user inadvertently gives the work number when asked for the home
number. The go-back facility would allow the user to correct this mistake.

Application: What is your home phone number?

User: 408-555-3200.

Application: What is your work phone number?

User: Go back.

Application: What is your home phone number?

User: 408-555-3042.

Application: What is your work phone number?

User: 408-555-3200.

44 VOICEXML REFERENCE

GO-BACK FACILITY

The go-back facility also allows users to change their minds after requesting one of
several alternatives. For example, it would permit the following interaction:

Go-Back Stack

When user says “go back,” the interpreter undoes whatever actions resulted from the
last response, then it prompts the user for a new response. The user can retract a
sequence of responses by saying “go back” repeatedly.

Each request for user input is called a go-back destination. When the user provides
the requested input, the interpreter saves information about the go-back destination
as an entry on its go-back stack.

If the user says “go back,” the interpreter uses the saved information for the most
recent go-back destination on the stack to undo the actions that resulted from the
user’s response. It then goes back to that go-back destination, popping the
corresponding entry off the stack.

Stack Entries

Each entry on the go-back stack saves information about one step the interpreter
performed during the execution of the application.

Go-Back Entries

The entries corresponding to go-back destinations are called go-back entries; they
correspond to the user-visible steps in the interaction. As the user retraces these
steps, the interpreter goes back to the appropriate elements within the VoiceXML
application, transparently moving between dialogs and documents as necessary. For
example:

• After the user fills the last field in a form, the form may transition to a different
form in a different document. If the user says “go back” to the first question on
the new form, the interpreter returns to the first form in the original document. It
clears the last field in that form, but restores the values of all other form item
variables in the form.

• A user’s response may match a link grammar that transitions to a different form
or that throws an event that causes a transition. Or a user’s response may match
a document-scoped grammar in a different form, causing a transition to that
form. If the user says “go back” to the first question in the new location, the
interpreter returns to the form and field that was being visited at the time of the
user’s last response.

Application: Would you like News, Weather, or Traffic?

User: Weather.

Application: What city?

User: Go back.

Application: Would you like News, Weather, or Traffic?

User: Traffic.

VOICEXML REFERENCE 45

Go-Back Stack

Internal Entries

In addition to the go-back entries, the go-back stack saves internal entries, which
correspond to non-user-visible steps, such as transitions between forms. When the
interpreter goes back to the most recent go-back destination, it also “undoes” each
non-user-visible step that occurred after the last go-back destination and pops the
corresponding internal entry off the stack.

A <block> form item does not request user input and so is not a possible go-back
destination. However, any block items that are executed between one input request
and the next are saved as internal stack entries that can be undone when the
interpreter goes back to the preceding input request.

Setting Stack Size

The bevocal.mingoback property specifies the minimum size of the go-back
stack. The interpreter keeps at least this many entries on the stack, except at the
beginning of the call when fewer steps have been executed, and after the user has
said “go back” so many consecutive times that the stack has been depleted.

By default, this property is set to 0, which means that the go-back stack is always
empty and the go-back facility is effectively disabled.

If you want your application to provide the go-back facility, you must use the
<property> tag to set the bevocal.mingoback to 1 or more.

For example, the following application sets the minimum stack size to 20 entries.

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<!-- Save at least 20 entries on the go-back stack -->
<property name="bevocal.mingoback" value="20"/>
<form>
<field name="home" type="phone">
<prompt>
What is your home phone number?

</prompt>
</field>
<field name="work" type="phone">
<prompt>
What is your work phone number?

</prompt>
</field>

</form>
</vxml>

46 VOICEXML REFERENCE

GO-BACK FACILITY

Go-Back Destinations

A VoiceXML application can request user input in a menu, in the initial item of a
mixed-initiative form, and in a field item. These elements, therefore, can be go-back
destinations.

Menus

A <menu> element asks the user to select a choice. The <menu> element is the
go-back destination for the user’s response. If the user says “go back” after selecting
a menu choice, the menu is executed again.

Mixed-Initiative Forms

The <initial> element of a mixed-initiative form asks the user for initial input to
the form. This element is the go-back destination for the user’s response. If the user
says “go back” after providing initial input, the initial element is executed again.

The user’s answer to the initial prompt may provide values for several of the form’s
field item variables. When the interpreter “undoes” an initial element, it clear’s not
only the initial form item variable, but also any field item variables that were set by
the user’s response.

Field Items

For the purposes of the go-back facility, field items can be classified as follows:

• The <field> and <record> items accept a single user input. These field items
appear to the user as a single request for information.

• The <transfer> item may involve a long interaction between the user and a
third party. It provides the application with a single piece of information, namely
the result of the transfer. During a transfer, however, the user may provide
various pieces of information to the third party and may later want to retract
some or all of that information.

• The <object> and <subdialog> items may accept multiple user inputs and
so they may appear to the user as multiple requests for information.

Single-Input Field Items

A <field> item asks the user for the value of its field item variable. A <record>
item asks the user for input to be recorded. These field items are go-back
destinations. If the interpreter goes back to one of these items, it clears the
corresponding field item variable and executes the item again. Going back to a
<field> item allows the user to give a different answer; going back to a <record>
item allows the user to provide different input to be recorded.

Transfer Items

A <transfer> item transfers the user to another destination, allowing the user to
carry on a conversation with a third party.

• At the end of a bridging transfer, the interpreter resumes execution of the form
containing the transfer item. The user might then say “go back” to the next
request for input.

• In a blind transfer, the current session terminates when the transfer is made; the
user has no opportunity to invoke the go-back facility at the end of the call.

VOICEXML REFERENCE 47

Go-Back Destinations

(Currently, the BeVocal interpreter supports bridging transfers only.)

A transfer item is a go-back destination. If the interpreter goes back to a transfer
item, the transfer call is repeated. Any change in the information exchanged during
the original transfer and during the repeated transfer is determined by the user’s
conversation with the third party and does not affect the VoiceXML application. For
example, the original transfer might place a call in which the user orders a pizza.
After that call, the user might say “go back,” and add a salad to the original order.

Object Items

An <object> item invokes a reusable Speech Object component. That component
may make one or more requests for information from the user. The information
supplied by the user (and other information) may be returned to the application in
properties of the field-item variable.

An object item is a go-back destination; however, the individual requests for input
made during the execution of the object are not go-back destinations.

Go-back behavior during the execution of the object is determined entirely by the
object implementation. The object might ignore a “go back” request completely.
Alternatively, the object might implement its own go-back facility, allowing the user to
retract answers to questions asked by the object.

Once control returns from the object to the VoiceXML interpreter, all the object’s
internal state is lost. If the user says “go back” to the next question after executing
the object, the object is executed again.

If an object requests a single user input, the go-back behavior is the same as for any
other single-input field item. If an object requests more than one user input, however,
the go-back behavior may not be what the user expects. For example, suppose a
form contains the following field items:

<field name="A">...</field>
<object name="B" ...>
...
<!-- Object asks questions C, D, and E -->

</object>
<field name="F">...</field>

A user who says “go back” when prompted for field F, might expect to provide a
different answer to question E. However, the interpreter goes back to object B. It
executes the object from the beginning, asking questions C, D, and E again.

Subdialogs

A <subdialog> item invokes another dialog as a subdialog of the current one.
Each request for input made by the subdialog is a go-back destination. The
<subdialog> element itself is also a go-back destination.

If the user says “go back” to a request for input inside the subdialog, the go-back
behavior is the same as in any other form. Within the subdialog’s execution context,
the go-back stack is initially identical to the go-back stack in the calling dialog’s
execution context. As each new input is requested, another go-back destination is
pushed onto the stack:

• If the user says “go back” to the first input request in the subdialog, the
interpreter returns to the last go-back destination in the calling dialog.

• If the user says “go back” to a subsequent input request in the subdialog, the
interpreter returns to the preceding go-back destination in the subdialog

48 VOICEXML REFERENCE

GO-BACK FACILITY

Once the subdialog returns to the calling dialog, however, the subdialog’s execution
context terminates. The go-back stack in the calling dialog’s execution context does
not contain any go-back destinations for the input requests made by the subdialog. A
new go-back destination is added for the subdialog itself.

If the subdialog requests a single user input, the go-back behavior is the same as for
any other single-input field item. If an subdialog requests more than one user input,
however, the go-back behavior may not be what the user expects. For example,
suppose a document contains the following forms:

<form id="main">
<field name="A">...</field>
<subdialog name="B" src="#sub">
...

</subdialog>
<field name="F">...</field>

</form>
<form id="sub">
<field name="C">...</field>
<field name="D">...</field>
<field name="E">...</field>
<filled>
<return namelist="A B C"/>

</filled>
</form>

A user who says “go back” when prompted for field F, might expect to provide a
different answer for field E in the subdialog. However, the interpreter goes back to
subdialog B. It executes the subdialog from the beginning, prompting again for fields
C, D, and E.

Note: In a future release, you may be able to specify whether “go back” will go back
into the subdialog (to ask for field E in the preceding example) or to the beginning of
the subdialog (as currently happens).

Controlling Go-Back Behavior

You can control the application’s use of the go-back facility in the following ways:

• You can prevent the user from retracting certain inputs.

• You can customize the application’s response to a go-back request from the
user.

• You can deactivate the go-back facility in the entire application, in a particular
document, in a particular dialog, or in a particular go-back destination.

Suppressing Retraction

You can prevent the user from retracting certain inputs by setting the
bevocal.goback property. This property controls whether requests for user input
are legal go-back destinations. By default, the property is set to "true" and each
request for input is a legal go-back destination. When the user provides the
requested input, the interpreter pushes a go-back entry for the request onto its
go-back stack.

VOICEXML REFERENCE 49

Controlling Go-Back Behavior

If the bevocal.goback property is "false", however, a request for input is a not
a legal go-back destination. When the user provides the requested input, the
interpreter pushes an internal entry for the request onto its go-back stack. The
internal stack entry enables the interpreter to undo the information request if the
user returns to an earlier go-back destination; however, it prevents the user from
going back to the request itself.

A user’s response is called “retractable” if a corresponding go-back entry is added to
the stack; if, instead, an internal entry is added to the stack, the response cannot be
retracted.

If you set the bevocal.goback property to "false" in a field, the user’s input for
the field is not retractable. The user cannot go back to that field, but may skip back to
retract the preceding retractable input. If you set this property to "false" in a form,
you prevent the user from retracting any input to that form.

When several fields are treated as a single conceptual unit, you may want to
suppress retraction of all but the first field. For example, the go-back facility treats the
city and state fields as a unit in the following form:

<form>
<field name="city">
<prompt>Choose a city</prompt>
<grammar>...</grammar>

</field>
<field name="state">
<property name="bevocal.goback" value="false"/>
<prompt>What state?</prompt>
<grammar>...</grammar>

</field>
<field name="first" type="boolean">
<prompt>
Do you want to fly first class?

</prompt>
</field>

</form>

The user cannot retract an answer to the question about state, but can skip past it to
retract the city, al illustrated in the following interaction.

Customizing Go-Back

When the speech-recognition engine matches the "goback" grammar, a
"goback" event is thrown. The default handler undoes entries on the go-back stack
until it reaches the most recent go-back entry, corresponding to the user’s last
retractable response. If the go-back stack is empty, the default handler plays an
audio message that says “Sorry, you can’t go back.”

Application: Choose a city.

User: Albany

Application: What state?

User: Georgia

Application: Do you want to fly first class?

User: Go back.

Application: Choose a city.

50 VOICEXML REFERENCE

GO-BACK FACILITY

If you want the application to take different actions, you can add your own event
handler for go-back events. For example, an application might keep information
about each user’s default location. If the user requests a traffic report from the main
menu, the traffic form might start to fetch the report for the user’s default location
without requesting the user’s city. The application could use the go-back facility to
allow the user to provide a different location.

<form id="traffic">
<catch event="goback">
<clear/>

</catch>
<field name="city" expr="document.defaultCity">
<prompt>What city?</prompt>
<grammar>...</grammar>

</field>
<block>
<prompt>
Retrieving traffic data for
<value name="city">
Say Go Back to choose another city.

</prompt>
<!-- Retrieve and play traffic report -->

</block>
</form>

An interaction with the application might proceed as follows.

In this case, saying “go back” takes the user to a question that has never been asked
before.

If the application’s go-back handler needs to take some actions and then proceed as
normal to undo the user’s response, it can perform the appropriate actions and then
rethrow the event to the default handler:

<catch event="goback">
...
<rethrow/>

</catch>

Application: Would you like news, weather, or traffic?

User: Traffic

Application: Retrieving traffic data for San Francisco. Say Go Back to choose
another city.

User: Go back.

Application: What city?

User: San Jose.

Application: Retrieving traffic data for San Francisco. Say Go Back to choose
another city.

VOICEXML REFERENCE 51

Using the Go-Back Facility

Activating and Deactivating Go-Back

The universal "goback" grammar recognizes the spoken “go back” request. Like all
universal grammars, it is activated by default in a VoiceXML 1.0 application and
deactivated by default in an application where the vxml tag’s version attribute
equals 2.0. See “Universal Grammars” on page 20.

You can set the universals property to activate or deactivate the "goback"
grammar, either in the entire application, or in particular documents, forms, or fields.
For example, the go-back facility is activated by default in the following document,
but deactivated during the execution of a the first form:

<vxml version="1.0">
<form>
<!-- Activate only help and exit universals -->
<property name="universals" value="help exit"/>
...

</form>
...

</vxml>

When the go-back facility is deactivated, the speech-recognition engine does not
recognize to the input “go back.” If the user says “go back” to the prompt for a field, a
no-match event is thrown. Note that this behavior is different from the default
behavior when the bevocal.mingoback property is set to 0. In that case, the “go
back” request is recognized. However, the go-back stack is empty, so the user hears
the message, “Sorry, you can’t go back.”

Using the Go-Back Facility

This section contains guidelines for using the go-back facility

Setting the Stack Size

You need to set the size of the go-back stack large enough to enable a user to
retrace as many steps as you think are likely. The size of the stack limits the number
of consecutive times the user can say “go back.” Remember, however, that the stack
must be large enough to accommodate internal entries as well as go-back entries.
When you set the stack size, you should allow for a few internal entries for each
go-back entry.

Using Blocks

You can safely put blocks between go-back destinations in a form. For example, in
the following form, if the user goes back to the home field, the interpreter “undoes”
the subsequent block, clearing its item variable and allowing the block to be visited
again after the user provides an new answer for the home field:

<form>
<field name="home" type="phone">
<prompt>
What is your home phone number?

</prompt>
</field>

52 VOICEXML REFERENCE

GO-BACK FACILITY

<block>
Your home number is <value expr="home"/>

</block>
<field name="work" type="phone">
<prompt>
What is your work phone number?

</prompt>
</field>

</form>

The interaction with the user might proceed as follows.

A <block> in a form is saved as an internal stack entry only if it occurs after the first
go-back destination in the form. If the form’s first item is a block containing a
welcoming prompt, no internal stack entry is saved for the block, so it will not be
revisited if the go-back facility returns to first input request in the form.

Tip:

• In a mixed-initiative form, put any welcoming prompt in the <initial> element,
not in a separate <block> element.

The internal stack entry for a block is undone and redone only if the interpreter
returns to a go-back destination before the block. As a consequence, a block that is
used to prompt for information in the subsequent field is not redone if the interpreter
goes back to the field. In the following form, if the user says “go back” when asked for
a work phone number, the request for the home phone number would not be
replayed.

<form>
<block>

What is your home phone number?
</block>
<field name="home" type="phone">
</field>
<block>
Your home number is <value expr="home"/>

</block>

Application: What is your home phone number?

User: 408-555-3200.

Application: Your home number is 408-555-3200.

What is your work phone number?

User: Go back.

Application: What is your home phone number?

User: 408-555-3042.

Application: Your home number is 408-555-3042.

What is your work phone number?

User: 408-555-3200.

VOICEXML REFERENCE 53

Using the Go-Back Facility

<field name="work" type="phone">
<prompt>
What is your work phone number?

</prompt>
</field>

</form>

Tip:

• Be sure to put the prompt for a field value inside the <field> element and not
in a separate <block> element.

Using Subdialogs

To avoid any confusion that can occur if the user says “go back” after returning from
a subdialog, try to limit your use of subdialogs to requests for confirmation or
disambiguation. In addition, you should prevent the subdialog itself from being a
legal go-back destination by setting the bevocal.goback property to "false"
inside the <subdialog> element. If the user says “go back” after the subdialog
returns, the interpreter will go back to the question preceding the
subdialog—presumably the question whose answer required confirmation or
clarification.

Using Variables

When the interpreter returns to a particular go-back destination in a form, it clears
form-item variables for every block, initial item, and field item that needs to be
undone. However, it does not change the values of any other variables declared in
dialog, document, or application scope. If the interpreter undoes a transition, going
back to a different form, it does not restore the variables declared in the form to the
values they had when that transition left the form.

If you use the go-back facility, you should avoid saving state information in variables
that cannot be reset by a go-back operation.

In limited circumstances, you may be able to reset variables in an error handler for
go-back events. In general, however, the event handler will not have enough context
to know what variables need to be reset because the event is thrown at the location
where the user says “go back”, not at the go-back destination.

54 VOICEXML REFERENCE

GO-BACK FACILITY

VOICEXML REFERENCE 55

6 Tag Reference

This chapter provides detailed information about each VoiceXML tag. Each entry
includes:

In the cases where the BeVocal interpreter deviates from the VoiceXML 1.0
Specification, the difference is clearly marked below in the following ways:

• Not Implemented - Functionality not currently available.

• Extension - Added functionality.

• Experimental Extension - Added functionality that may be included in a later
specification for VoiceXML. If the extension is standardized, the BeVocal
implementation will change as necessary to match the VoiceXML standard.

• Deprecated - Non-standard or superseded feature that was supported by an
earlier version but has been replaced by a new feature.

Syntax Summary of how the tag is used.

Description Description of attributes or other details.

Usage Table of parent and children tags. Parent tags can contain this
tag and children tags can be used within this tag.

See Also Links to related information.

Examples Short examples you can run as simple, standalone
applications.

56 VOICEXML REFERENCE

TAG REFERENCE

<assign>

Assign a variable a value.

Syntax

<assign
name="string"
expr="js_expression"/>

Description

Tip:

• In JavaScript, "+" means both string concatenation and add. If you want to add
two numbers represented by string variables a and b in an <assign>, use:
<assign name="x" expr="Number(a) + Number(b)"/>

This is because expr="a + b" will concatenate the string values. Multiply,
divide, and subtract are not ambiguous in this way.

Usage

See Also

• VoiceXML 1.0 Specification:
<assign>

• JavaScript Quick Reference

• Related tag:
“<var>” on page 193

Attribute Description

name Name of variable.

expr JavaScript expression that evaluates to the value assigned to
this variable.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.2
http://cafe.bevocal.com/docs/javascript_quick_reference/index.html

VOICEXML REFERENCE 57

<assign>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<form id="foo">
<var name="a"/>
<var name="b"/>
<var name="result"/>
<block>
<assign name="a" expr="’Pine’"/>
<assign name="b" expr="’Apple’"/>
<assign name="result" expr="a + b"/>

</block>
<block>
<prompt>
This is the test for the assign tag.
If you put <value expr="a"/> and <value expr="b"/> together, it
would make <value expr="result"/>

</prompt>
</block>

</form>
</vxml>

58 VOICEXML REFERENCE

TAG REFERENCE

<audio>

Play an audio clip within a prompt.

Syntax

<audio
src="URL"
expr="js_expression"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"|"stream"
fetchtimeout="time_interval"
maxage="time_interval"
maxstale="time_interval" >

Optional Content
</audio>

Description

The following formats are supported for audio files:

Attribute Description

src The URL of the audio file. Optional (as alternative to expr).

If not specified or invalid (that is, the interpreter was unable to
perform the fetch from the specified URL), any content of the
<audio> element will be played instead. The content can
include text or valid child tags.

expr Extension. JavaScript expression that evaluates to either a
string or an array or strings. If it evaluates to a string, the string
is interpreted as a URL and the audio file at the location is
fetched and played. It it is an array, each element is treated as
an audio file URL, each of which is fetched and played, in turn.
Optional (as alternative to src).

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

Notes:
• The interpreter can prefetch an audio file specified by the
src attribute, but not by the expr attribute.

• The ability to stream audio files in a beta feature.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Audio Format MIME Type

AU files (with the “au” header format) audio/basic

Raw (headerless) 8 KHz 8-bit mono mu-law [PCM]
single channel

audio/basic

Raw (headerless) 8 KHz 8-bit mono A-law [PCM]
single channel

audio/x-alaw-basic

VOICEXML REFERENCE 59

<audio>

Tips:

• Using <audio> rather than <prompt> makes it easy to set up TTS prompts
now and add professional prompts later. With <prompt>, you can only use TTS.

• Audio files must be 8 KHz mono WAV files, AU files, or MP3 files. If the specified
file is of a different type, any alternative audio content of the <audio> element
(text, prompts, and so on) is played instead.

• Note that you can use <audio> within a <prompt>. If you do, it will inherit the
attributes of the <prompt> element, such as bargein.

• If you name your audio files consistently, you can use the expr attribute to
simplify the way you construct audio file names in your VoiceXML. For example:
<prompt>
<audio expr="'resources/prompts/hello'
+ sign +'.wav'"/>

</prompt>
<prompt>
<audio expr="'resources/prompts/' + sign
+'.wav'"/>

</prompt>

• If you use the expr attribute in place of the src attribute, the interpreter cannot
prefetch the audio file, which may cause a minor performance degradation.
Once a given file is in the interpreter’s cache, however, this difference is typically
not noticeable.

• Using JavaScript functions makes it easy to update the location of your audio
files. For example:
function female1(a) {
return("audio/female1/en_us/" + a); }

function common(b) {
return(female1("common/" + b + ".wav")); }

function number(b) {
return(female1("number/" + b + ".wav")); }

For an expanded example, see factorial sample code.

(http://cafe.bevocal.com/docs/samples/factorial/factorial.vxml)

• When calling JavaScript functions, use apostrophes in place of double quotes:
<audio expr="common('bevocal_chimes')"/>

WAV (RIFF header) 8 KHz 8-bit mono mu-law [PCM]
single channel

audio/wav

WAV (RIFF header) 8 KHz 8-bit mono A-law [PCM]
single channel

audio/wav

Audio Format MIME Type

http://cafe.bevocal.com/docs/samples/factorial/factorial.vxml

60 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<audio>

Parents Children

<menu>
<choice>
<prompt>
<enumerate>
<field>
<initial>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<audio>
<div>
<emp>
<pros>
<record>
<transfer>
<if>
<filled>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.3

VOICEXML REFERENCE 61

<audio>

Examples

Example 1 - using src:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block>
<audio>
Welcome to BeVocal Cafe, the number One place to build and
deploy your voice applications.

</audio>
<audio caching="safe"

src="http://cafe.bevocal.com/libraries/audio/female1/en_us/common/bevocal_cafe.wav"
/>

BeVocal Cafe.
</block>

</form>
</vxml>

62 VOICEXML REFERENCE

TAG REFERENCE

Example 2 - using expr:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!-- Define functions; one returns a string;
many returns an array of strings -->

<script>
<![CDATA[
base = "http://cafe.bevocal.com/libraries/audio/female1/en_us/number/";

]]>

function one() {
return base + "6000-e.wav";

}

function many() {
var result = new Array(4);
result[0] = base + "6000-b.wav";
result[1] = base + "300.wav";
result[2] = base + "37_and.wav";
result[3] = base + "1-32.wav";
return result;

}
</script>

<form>
<block>
<prompt>
Playing result of one
<audio expr="one()">one</audio>
<break/>
Playing result of many
<audio expr="many()">many</audio>

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 63

<block>

<block>

Contain (non-interactive) executable code.

Syntax

<block
name="string"
expr="js_expression"
cond="js_expression">

Executable Content
</block>

Description

Control item container of executable code. As with all form items, a block’s form item
variable must have a value of "undefined" before the block can execute. Just
before the block is entered, the interpreter sets its form item variables to "true",
so a block is typically executed only once per form invocation.

Attribute Description

name Name of form item variable, which may not be a JavaScript reserved
keyword. Optional (default is an unusable internal name).

The form item variable has dialog (form) scope; its name must be
unique among all VoiceXML and JavaScript variables within the
form’s scope.

Generally, you use this attribute only if you want to control block
execution explicitly.

expr JavaScript expression that assigns the initial value of the form item
variable. Optional (default is "undefined").

If you set the form item variable to a value other than "undefined",
then you’ll need to clear it before the block can execute. Note that you
need to give the block a name if you want to clear it separately from
other form item variables.

cond JavaScript boolean expression that must also evaluate to "true" for
the block to execute. Optional (default is "true").

If not specified, the value of the form item variable alone determines
whether or not the block can execute.

64 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<block>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block name="hello">
<prompt>
Welcome to BeVocal Cafe. It is the best known place
for Voice X M L Development.
<audio src="bevocal_chimes.wav"> </audio>

</prompt>
</block>

</form>
</vxml>

Parents Children

<form> <audio>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.2

VOICEXML REFERENCE 65

<break>

<break>

Java Speech Markup Language (JSML) element to insert a pause in output.

Syntax

<break
msecs="time_interval"
size="none"|"small"|"medium"|"large"/>

Description

Usage

See Also

• VoiceXML 1.0 Specification:
<break>

• Related tags:
“<div>” on page 80
“<emp>” on page 87
“<pros>” on page 156
“<sayas>” on page 168

Attribute Description

msecs Amount of time to pause, in milliseconds. Optional (default is 1
second).

Express time interval as an unsigned number followed by "s"
for time in seconds; "ms" for time in milliseconds (the default).

size How long to pause, specified qualitatively. Optional (as
alternative to msecs).
• none - No pause.
• small - Short pause (500 milliseconds).
• medium - Longer pause (1 second).
• large - Long pause (2 seconds).

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.2.1

66 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="demo-break">
<block>
<prompt>
Voice X M L allows the programming of silence
<break size="medium"/>
with the break tag.

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 67

<catch>

<catch>

Catch an event.

Syntax

<catch
event="event1 ..."
count="integer"
cond="js_expression">

Executable Content
</catch>

Description

Container for event handling code. Like <block>, you can put non-interactive
executable code (procedural logic) in a <catch> element to handle an event.

Although you can define your own events, there is a set of predefined events. The
BeVocal interpreter provides a standard set of default event handlers for the
predefined events.

If multiple handlers for a given event are defined in, or inherited by, the element in
which the event occurs, one handler is chosen based on count, scope, and
document order. See Chapter 3, “Event Handling”.

Tips:

• Because you can throw events from within a <catch>, be sure to avoid infinite
loops. For example, the following handler would result in an infinite loop:

<catch event="foobar">
<throw event="foobar"/>

</catch>

• You can use a <submit> within a <catch> for a
telephone.disconnect.hangup event to notify the server that the call has
ended. Because the call is no longer connected, any VoiceXML document
returned from the server will be ignored and the interpreter will exit. Similarly, if
you use a <goto> within a <catch> for this event, it will be ignored and the
interpreter will exit.

• Within an event handler, the _event variable contains the name of the event
currently being handled; the _message variable contains the message string

Attribute Description

event Name of the event(s) to catch.

Extension. You can specify an empty string to catch all events.

count Minimum number of times the event must have occurred during a
form or menu invocation. Lets you handle different occurrences of the
same event differently. Optional (default is "1").

cond JavaScript boolean expression that must also evaluate to "true" for
an event to be caught. Optional (default is "true").

68 VOICEXML REFERENCE

TAG REFERENCE

that provides additional information about the event. If no message was supplied
when the event was thrown, the _message variable is "undefined".

Usage

See Also

• VoiceXML 1.0 Specification:
<catch>

• Variable:
“_event” on page 212
“_message” on page 212

• Related tags:
“<error>” on page 90
“<help>” on page 120
“<noinput>” on page 136
“<nomatch>” on page 138
“<rethrow>” on page 162
“<throw>” on page 183

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.2

VOICEXML REFERENCE 69

<catch>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<form id="stars">
<catch event="nomatch">
<prompt>
Sorry, I did not hear any number more than ten.

</prompt>
<reprompt/>

</catch>
<block name="numbergame">
You can create games with numbers by using Javascript

</block>
<field name="mynumber" type="number">
<prompt>
Tell me a number and I can repeat it for you.
You can say help for information.

</prompt>
<catch event="help">
<prompt>
Please say a number more than 10
and less than infinity.

</prompt>
</catch>
<filled>
<if cond="mynumber > 10">
<prompt>
The number you said is <value expr="mynumber"/>

</prompt>
<else/>
<clear namelist="mynumber"/>
<throw event="nomatch"/>

</if>
</filled>

</field>
</form>

</vxml>

70 VOICEXML REFERENCE

TAG REFERENCE

<choice>

Define a menu item.

Syntax

<choice
accept="exact"|"approximate"
next="URL"
event="event"
expr="js_expression"
dtmf="dtmf_sequence"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" >

Choice Text
</choice>

Description

Attribute Description

accept Extension. Specifies whether the default grammar generated
for this <choice> element requires all words or accepts a
subset of the words; overrides the accept attribute of the parent
<menu> element.
• exact - Requires the user to say the exact phrase that

appears in the <choice> element.
• approximate - Allows the user to say a subset of the words

in the <choice> element.

Note: For backward compatibility with his extension, the
default is "approximate" if the version attribute of the
containing <vxml> element is less than 2.0 or unspecified.
The default is "exact" if the version attribute specifies 2.0
or greater.

next URL of the dialog or document to visit when this choice is
selected. Optional (as an alternative to event or expr).

event An event to throw when this choice is selected. Optional (as an
alternative to next or expr).

expr JavaScript expression that evaluates to a URL of the dialog or
document to visit when this choice is selected. Optional (as an
alternative to next or event).

dtmf DTMF sequence that can be used to select this choice.
Optional (default is no DTMF value).

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

VOICEXML REFERENCE 71

<choice>

One and only one of the next, event, or expr attributes must be specified.

Usage

See Also

• VoiceXML 1.0 Specification:
<choice>

• Related tag:
“<menu>” on page 131

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<menu>
<prompt bargein="true">
Welcome to BeVocal Home.
<enumerate> For
<value expr="_prompt"/> say <value expr="_prompt"/>

</enumerate>
</prompt>
<choice next="SODrivingDirections.vxml">driving directions</choice>
<choice next="SOStockQuotes.vxml">stock quotes</choice>
<choice next="SOBiznessFinder.vxml"> bizness finder</choice>

</menu>
</vxml>

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<menu> <audio>
<value>
<grammar>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s7

72 VOICEXML REFERENCE

TAG REFERENCE

<clear>

Clear one or more form item variables.

Syntax

<clear>
namelist="variable1 ..."/>

Description

When the interpreter resets a form item, it:

• Sets the form item variable’s value to "undefined".
• Resets the form item’s prompt and event counters to "0".

Usage

See Also

• VoiceXML 1.0 Specification:
<clear>

• Related tags:
“<field>” on page 95
“<record>” on page 157
“<object>” on page 140
“<subdialog>” on page 177
“<transfer>” on page 185
“<block>” on page 63
“<initial>” on page 124

Attribute Description

namelist Space separated list of form item variables to reset. Optional
(default behavior clears all form item variables in the current form).

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.3

VOICEXML REFERENCE 73

<clear>

Examples

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0" >
<form id="form1">
<field name="ssn" type="digits">
<prompt>
Please say your S S N number.

</prompt>
</field>
<field name="passcode" type="digits">
<prompt>
Please say your Pass code number

</prompt>
</field>
<field name="choice" type="boolean">
<prompt>
Your S S N is
<value expr="ssn"/>
and your passcode is
<value expr="passcode"/>.
Are the values right ?

</prompt>
<filled>
<if cond="choice">
<prompt> That is good. </prompt>

<else/>
<clear/>
<prompt>Let’s do it again </prompt>

</if>
</filled>

</field>
</form>

</vxml>

74 VOICEXML REFERENCE

TAG REFERENCE

<data>

Experimental Extension. Fetch arbitrary XML data from an HTTP server, or submit
values to a server.

Syntax

<data
src="URL"
name="string"
expr="js_expression"
method="get"|"post"
namelist="variable1 ..."
enctype=MIME_type
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
maxage="time_interval"
maxstale="time_interval" />

Description

The <data> tag fetches or submits data without transitioning to a new VoiceXML
document.

The XML data fetched by the <data> element is returned in a read-only JavaScript
variable via an object model as specified in the W3C Document Object Model
(DOM).

Note: BeVocal is providing the current implementation before the standard is
finalized to give our developers the opportunity to use the tag and provide feedback,
which we can pass on to the W3C. If <data> is standardized, the BeVocal
implementation will change as necessary to match the VoiceXML standard. If such
changes occur, we will attempt to maintain backwards compatibility with the current
implementation.

Attribute Description

src URL specifying the location of the XML data. Optional (as
alternative to expr).

name Variable name, which must be a valid JavaScript identifier and
may not be a reserved keyword in either JavaScript or Java.

If the name attribute is omitted, the HTTP request is submitted,
but the retrieved data is ignored.

expr JavaScript expression that evaluates to the URL of the XML
data. Optional (as alternative to src).

method The query request method, either "get" or "post". Optional
(default is "get").

VOICEXML REFERENCE 75

<data>

If a <data> element names a variable that is already in scope, it does not declare a
new variable with the same name, but simply assigns a value to the existing
variable—the variable is assigned a reference to the DOM returned from the server.

Usage

See Also

None

enctype MIME encoding used when submitting data with the "post"
method. Optional (default is
application/x-www-form-urlencoded).

The supported types are:
application/x-www-form-urlencoded
multipart/form-data

The type multipart/form-data is more efficient when
submitting large amounts of binary data.

namelist Space separated list of variables to submit to the server.
Optional (default is to submit no variables).

This attribute can specify both VoiceXML variables and
JavaScript variables, including variables that have not been
explicitly declared.

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<form>
<vxml>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

Attribute Description

76 VOICEXML REFERENCE

TAG REFERENCE

<debug>

Deprecated. Generate debug information.

Syntax

<debug
expr="js_expression" />

Description

Extension: The debug tag is a BeVocal extension to the VoiceXML 1.0 specification.
It has been replaced by the <log> tag.

Note: It is recommended that you use the <log> tag, instead of this tag. The <log>
tag is an extension which will be supported going forward.

Usage

See Also

• Related tag:
“<log>” on page 129

Attribute Description

expr JavaScript expression to evaluate and enter into the debug log.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

VOICEXML REFERENCE 77

<debug>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block name="dbg">
<debug expr="num"/>
<debug expr="fruit"/>

</block>
<field name="num" type="number">
<prompt>Say a number.</prompt>

</field>
<field name="fruit">
<grammar> [apples oranges] </grammar>
<prompt>Do you want apples or oranges?</prompt>

</field>
<filled mode="any" namelist="num fruit">
<clear namelist="dbg"/>

</filled>
<block>
<debug expr="’end of form foo reached’"/>

</block>
</form>

</vxml>

78 VOICEXML REFERENCE

TAG REFERENCE

<disconnect>

Disconnect a telephone session.

Syntax

<disconnect/>

Description

Forces the execution environment to disconnect the telephone call with the user.
Throws a telephone.disconnect.hangup event. If an event handler catches
this event, it can perform one last <submit> to notify the server that the call has
ended. Because the call is no longer connected, any VoiceXML document returned
from the server will be ignored and the interpreter will exit.

Usage

See Also

• VoiceXML 1.0 Specification:
<disconnect>

• Related tag:
“<transfer>” on page 185

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.11

VOICEXML REFERENCE 79

<disconnect>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<catch event="telephone">
<debug expr="code"/>

</catch>
<field name="code" type="digits">
<prompt> Say your passcode now. </prompt>

</field>
<block>
<prompt> That was the last form item. </prompt>
<disconnect/>

</block>
</form>

</vxml>

80 VOICEXML REFERENCE

TAG REFERENCE

<div>

Java Speech Markup Language (JSML) element to classify a region of text as a
particular type.

Syntax

<div
type="sentence"|"paragraph">

Text
</div>

Description

Identifies enclosed text as a particular type for interpretive purposes.

The contained text is spoken normally; <div> has no effect.

Usage

See Also

• VoiceXML 1.0 Specification:
<div>

• Related tags:
“<break>” on page 65
“<emp>” on page 87
“<pros>” on page 156
“<sayas>” on page 168

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

<audio>
<enumerate>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.2.2

VOICEXML REFERENCE 81

<dtmf>

<dtmf>

Deprecated. Specify a touch-tone key grammar.

Syntax

<dtmf
scope="document"|"dialog"
src="URL"
expr="js_expression"
type="MIME_type"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
universal="string" >

Optional Inline DTMF Grammar

</dtmf>

Description

Defines a grammar for telephone key press sequences.

Note: This tag may be removed in a future release of the BeVocal VoiceXML
Interpreter. We strongly recommend that all new applications use the <grammar>
tag instead.

Attribute Description

scope Sets the scope of the DTMF grammar.
• document - the grammar will be active throughout the

current document. If the document is the application root
document, then it will be active throughout the application
(application scope).

• dialog - the grammar is active throughout the current form.

Note: A <dtmf> element can include a scope attribute only if
its parent is a <form> element. Optional (default is dialog).

The scope of any other <dtmf> element is determined by its
parent:
• If the parent is a field item, the grammar has field scope.
• If the parent is a link, the scope is the element that contains

the link.
• If the parent is a menu choice, the grammar scope is

specified by the scope property of the containing <menu>
element (or dialog scope by default).

src URL of the DTMF grammar specification, when it is contained
in an external file. Optional (as an alternative to an inline DTMF
grammar).

expr Extension. JavaScript expression that evaluates to grammar
file URL. Optional (as alternative to src).

82 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<dtmf>

• Related tag:
“<grammar>” on page 115

type MIME type of the DTMF grammar. Optional (default is
"application/x-gsl").

The currently supported types are:
• application/x-gsl - Nuance GSL
• application/x-gsc - Nuance Condensed Grammar

If you specify an unsupported type, an error is thrown.

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

universal Extension. Makes this grammar a “universal” grammar with the
specified name so that it can be activated and deactivated
using the universals property. This attribute does not affect
the scope of the grammar; it simply assigns it to a universal
category.

Parents Children

<form>
<field>
<link>
<transfer>

None.

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s10.2

VOICEXML REFERENCE 83

<else>

<else>

Mark an else clause within an <if> element.

Syntax

<else/>

Description

Empty tag that marks an else clause within an <if> element.

Usage

See Also

• VoiceXML 1.0 Specification:
<else>

• Related tags:
“<if>” on page 122
“<elseif>” on page 85

Parents Children

<if> None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.4

84 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<field name="color">
<grammar>[black white green blue purple yellow red]</grammar>
<prompt>
If you say your favorite color, I shall tell you its
hexa decimal color code. What <emp>color? </emp>

</prompt>
<filled>
<if cond="color == ’black’">
<assign name="color_code" expr="’000000’"/>

<elseif cond="color == ’white’"/>
<assign name="color_code" expr="’FFFFFF’"/>

<elseif cond="color == ’green’"/>
<assign name="color_code" expr="’00FF00’"/>

<elseif cond="color == ’blue’"/>
<assign name="color_code" expr="’0000FF’"/>

<elseif cond="color == ’purple’"/>
<assign name="color_code" expr="’7D26CD’"/>

<elseif cond="color == ’yellow’"/>
<assign name="color_code" expr="’8B8B00’"/>

<elseif cond="color == ’red’"/>
<assign name="color_code" expr="’CD0000’"/>

<else/>
<assign name="color_code" expr="’?’"/>

</if>
<prompt>
The code for <value expr="color"/> is <value expr="color_code"/>

</prompt>
<clear namelist="color color_code"/>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 85

<elseif>

<elseif>

Mark an else-if clause within an <if> element.

Syntax

<elseif
cond="js_expression"/>

Description

Usage

See Also

• VoiceXML 1.0 Specification:
<elseif>

• Related tags:
“<if>” on page 122
“<else>” on page 83

Attribute Description

cond JavaScript boolean expression that must evaluate to "true"
for the clause to execute.

Parents Children

<if> None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.4

86 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<form id="foo">
<field name="color">
<grammar>[black white green blue purple yellow red]</grammar>
<prompt>
If you say your favorite color, I shall tell your its
hexa decimal color code. What <emp>color? </emp>

</prompt>
<filled>
<if cond="color == ’black’">
<assign name="color_code" expr="’000000’"/>

<elseif cond="color == ’white’"/>
<assign name="color_code" expr="’FFFFFF’"/>

<elseif cond="color == ’green’"/>
<assign name="color_code" expr="’00FF00’"/>

<elseif cond="color == ’blue’"/>
<assign name="color_code" expr="’0000FF’"/>

<elseif cond="color == ’purple’"/>
<assign name="color_code" expr="’7D26CD’"/>

<elseif cond="color == ’yellow’"/>
<assign name="color_code" expr="’8B8B00’"/>

<elseif cond="color == ’red’"/>
<assign name="color_code" expr="’CD0000’"/>

<else/>
<assign name="color_code" expr="’?’"/>

</if>
<prompt>
The code for <value expr="color"/> is <value expr="color_code"/>

</prompt>
<clear namelist="color color-code"/>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 87

<emp>

<emp>

Java Speech Markup Language (JSML) element to change the emphasis of speech
output.

Syntax

<emp
level="strong"|"moderate"|"none"|"reduced">

Text
</emp>

Description

Any attribute is ignored; the contained text is spoken normally.

Usage

See Also

• VoiceXML 1.0 Specification:
<emp>

• Related tags:
“<break>” on page 65
“<div>” on page 80
“<pros>” on page 156
“<sayas>” on page 168

Attribute Description

level Level of emphasis to use when speaking the enclosed text.
Optional (default is "moderate").

Possible values are:
• strong
• moderate
• none
• reduced

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

<audio>
<enumerate>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.2.3

88 VOICEXML REFERENCE

TAG REFERENCE

<enumerate>

Shorthand for enumerating the options in a field or the choices in a menu.

Syntax

<enumerate>
Optional Template Content

</enumerate>

Description

Automatically generates a description of acceptable input based on the template you
provide. An <enumerate> element may be used in prompts and event handlers
within <menu> elements and within <field> elements that contain <option>
elements; an error.semantic event is though if it is used elsewhere.

When this tag is in a <menu> element or a prompt or event handler that is executed
while a menu is active, it enumerates all <choice> elements within the active menu.
When this tag is in a <field> element or a prompt or event handler that is executed
while a field is active, it enumerates all <option> elements within the active field.

Two special variables are available for use in template content for auto-generated
text:

If this tag has no content, the generated text simply lists the prompts from the option
or choice elements in the field or menu.

Usage

See Also

• VoiceXML 1.0 Specification:
<enumerate>

Variable Meaning

_prompt Prompt of current choice.

_dtmf DTMF sequence assigned to current choice.

Parents Children

<menu>
<prompt>
<field>
<catch>
<error>
<help>
<noinput>
<nomatch>
<audio>
<div>
<emp>
<pros>
<if>

<audio>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s7

VOICEXML REFERENCE 89

<enumerate>

• Related tags:
“<menu>” on page 131
“<field>” on page 95

Examples

If you run this example, the menu’s prompt will be:

“Welcome to BeVocal Home. For driving directions, say driving directions. For stock quotes, say stock quotes. For
business finder, say business finder.”

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<menu>
<prompt bargein="true">
Welcome to BeVocal Home.
<enumerate> For
<value expr="_prompt"/> say <value expr="_prompt"/>

</enumerate>
</prompt>
<choice next="SODrivingDirections.vxml">driving directions</choice>
<choice next="SOStockQuotes.vxml">stock quotes</choice>
<choice next="SOBiznessFinder.vxml"> bizness finder</choice>

</menu>
</vxml>

90 VOICEXML REFERENCE

TAG REFERENCE

<error>

Catch an error event.

Syntax

<error
count="integer"
cond="js_expression">

Executable Content
</error>

Description

Shorthand for <catch event="error">. Catches error events of all kinds.

If multiple error handlers are defined in, or inherited by, the element in which the
error occurs, one handler is chosen based on event count, scope, and document
order. See Chapter 3, “Event Handling”.

Tips:

• Within an event handler, the _event variable contains the name of the event
currently being handled; the _message variable contains the message string
that provides additional information about the event. If no message was supplied
when the event was thrown, the _message variable is "undefined".

Attribute Description

count Minimum number of times an error must have occurred during
a form or menu invocation. Optional (default is "1").

cond JavaScript expression that must also evaluate to "true" for an
event to be caught. Optional (default is "true").

VOICEXML REFERENCE 91

<error>

Usage

See Also

• VoiceXML 1.0 Specification:
<error>

• Variable:
“_event” on page 212
“_message” on page 212

• Related tags:
“<catch>” on page 67
“<help>” on page 120
“<noinput>” on page 136
“<nomatch>” on page 138
“<rethrow>” on page 162
“<throw>” on page 183

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.3

92 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block>
<audio

src="http://cafe.bevocal.com/libraries/audio/female1/en_us/common/pleasetryback.wav
"/>

I am sorry, There was a problem -- please try back later.
</block>
<error>
<prompt>Error occurred</prompt>
<exit/>

</error>
<block name="debuginfo">
<debug name="error1" expr="Test for Error: PASSED"/>

</block>
</form>

</vxml>

VOICEXML REFERENCE 93

<exit>

<exit>

Exit a session.

Syntax

<exit
expr - not implemented
namelist - not implemented />

Description

Unloads all documents and returns control to the interpreter’s execution
environment.

The expr and namelist attributes are not meaningful because the BeVocal
execution context does not accept return values from the execution of a VoiceXML
document.

Usage

See Also

• VoiceXML 1.0 Specification:
<exit>

Attribute Description

expr Not implemented. JavaScript expression that evaluates to the
value to return to the execution environment. Optional (as
alternative to namelist).

namelist Not implemented. Space separated list of variable names to
return to the interpreter execution environment. Optional
(default is to return nothing).

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.9

94 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<catch event="telephone">
<debug expr="’user said disconnect’"/>

</catch>
<field name="choose">
<grammar> [exit disconnect] </grammar>
<prompt>Please say exit</prompt>

</field>
<block>
<if cond="choose==’exit’">
<exit/>
<prompt> you should NOT hear this prompt! </prompt>

</if>
<disconnect/>

</block>
</form>

</vxml>

VOICEXML REFERENCE 95

<field>

<field>

Declare an input field in a form.

Syntax

<field
name="string"
expr="js_expression"
cond="js_expression"
type="boolean"|"date"|"digits"|"currency"|

"number"|"phone"|"time"|"airport"|
"airline"|"equity"|"street"|
"streetnumber"|"citystate"

slot="string"
modal="true"|"false">

Child Elements
</field>

Description

Field item that prompts user for a value that matches a particular grammar.

Attribute Description

name Name of the field item variable that will hold the recognition result.
The variable name may not be a JavaScript reserved keyword.

The field item variable has dialog (form) scope; its name must be
unique among all VoiceXML and JavaScript variables within the
form’s scope.

expr JavaScript expression that assigns the initial value of the field item
variable for this field. Optional (default is "undefined").

If you set the field item variable to a value other than "undefined",
you’ll need to clear it before the field can execute.

cond JavaScript boolean expression that also must evaluate to "true" for
the field to execute. Optional (default is "true").

If not specified, the value of the field item variable alone determines
whether or not the field can execute.

96 VOICEXML REFERENCE

TAG REFERENCE

Properties of the Shadow Variable. Corresponding to the field item variable name
is a “shadow variable” called name$. After the field item variable is filled, some
additional information is available in the following properties of this shadow variable:

• confidence - The recognition confidence level (with 0.0 representing the
lowest confidence and 1.0 representing the highest).

• utterance - A string representation of the words actually spoken by the caller.

type Specifies an internal grammar. Optional (as alternative to
<grammar> element).
• boolean - Grammar for recognizing positive and negative

responses. Returns "true" for yes and "false" for no.
• date - Grammar for recognizing dates. Returns string with format
"yyyymmdd"; "????" is used for an unknown year and "??" is
used for an unknown month or day.;

• digits - Limited grammar for recognizing a sequence of digits.
Returns a string of digits.

• currency - Grammar for recognizing amounts of money, in dollars
(Not Implemented: International currency designation). Returns a
string with format "mm.nn".

• number - More general grammar for recognizing numbers. Returns
a string that could include digits, a decimal point, or positive or
negative sign.

• phone - Grammar for recognizing a telephone number adhering to
the North American Dialing Plan (with no extension). Returns a
sequence of digits.

• time - Grammar for recognizing a time. Returns a string with
format "hhmmx" where and x is one of: "a" for AM, "p" for AM,
"h" for 24 hour notation, or "?" for an ambiguous time (could be
AM or PM).

Extensions:
• airport - Grammar for recognizing airport codes, such as DFW
• airline - Grammar for recognizing airline codes, such as AA
• equity - Grammar for recognizing company symbol or full name,

such as ibm or cisco systems
• street - Grammar for recognizing street name (with or without

street number), such as bordeaux drive or 1380 bordeaux
drive

• streetnumber - Grammar for recognizing street number
• citystate - Grammar for recognizing city name and state name

separated by a comma, such as sunnyvale, california

slot If this field is part of a mixed-initiative dialog, the name of the
grammar slot that will be used to assign a value to the field item
variable for this field. Optional (defaults to variable name).

This attribute is ignored by a field-level grammar. See BeVocal
Grammar Reference for more information on grammar slots.

modal Boolean value that must be "true" to temporarily turn off higher
level grammars. Optional (default is "false").

Lets you alter default behavior so that only this field’s grammars are
active while the field executes. This attribute turns off both
independent grammars and rule sets.

Attribute Description

http://cafe.bevocal.com/docs/grammar/index.html
http://cafe.bevocal.com/docs/grammar/index.html

VOICEXML REFERENCE 97

<field>

• inputmode - The mode in which input was provided, one of "voice" or
"dtmf".

Note: Shadow variable properties are not set for a field of an extended built-in type,
such are "airline".

For a field whose name is name, you access the property propName of the shadow
variable with the syntax:

name$.property

For example, you access the confidence property for the color field as:

color$.confidence

Built-In Types - Parameters. Some built-in field types can be parameterized to
affect the built-in type's behavior. The following table shows the type that can be
parameterized and indicates which input parameters must be specified.

A parameter is specified with in type attribute with syntax of the form:

typeName ? parameter = value

For example the following element specifies a field of type digits that must contain
exactly five digits:

<field name="mydigits" type="digits?length=5">
...

More than one parameter may be specified separated by semicolons.

Field Type Input Parameters

boolean • y - The DTMF keypress for an affirmative response.
• n - The DTMF keypress for a negative answer.

digits • minlength - The minimum number of digits in a valid
response.

• maxlength - The maximum number of digits in a valid
response.

• length - The exact number of digits in a valid response.

street • city - The city in which the street is located (required).
• state - The state in which the specified city is located

(required).

streetnumber • street - The street in which the street number is located
(required).

• city - The city in which the specified street is located
(required).

• state - The state in which the specified city is located
(required).

98 VOICEXML REFERENCE

TAG REFERENCE

Extended Types - Input. The following table shows default prompts and example
user inputs for each extended built-in type. The default prompt is the question with
which the system prompts the user for a field value.

Extended Types - Properties. Some built-in field types have JavaScript properties
that can be accessed once the value of the field has been filled. The following table
lists the properties of the extended built-in types.

A property is accessed with an expression of the form:

fieldName . propertyName

For example the city property of a citystate field is accessed as follows:

<field name="mycity" type="citystate">
<filled>
<prompt>The city is <value expr="mycity.city"/>

</filled>
</field>

Extended Types - Output. The following table describes the audio and string
representation for a value of each extended built-in type.

Field Type Default Prompt Example Inputs

airport Name an airport or its city

(Prompts for disambiguation)

San Jose

DFW

airline Please say the airline American

UA

equity Name a company or index Cisco

ORCL

street Say a street name in city Bordeaux Drive

streetnumber Say the street number 1380

citystate Name a city and state Sunnyvale, California

Field Type Properties

airport city, state, code

airline code, name

equity name, symbol

street -

streetnumber -

citystate city, state

Field Type Audio Output String Result

airport Airport name Dallas Fort Worth International
Airport (DFW)

airline Airline name American Airlines (AA)

equity Company name ORCL

VOICEXML REFERENCE 99

<field>

Usage

See Also

• VoiceXML 1.0 Specification:
<field>

• BeVocal Grammar Reference

• Related tags:
“<filled>” on page 107
“<grammar>” on page 115

street Street name Bordeaux Ave

streetnumber Street number 1380 Bordeaux Ave

citystate City State Sunnyvale

Parents Children

<form> <audio>
<enumerate>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<filled>
<dtmf>
<grammar>
<link>
<option>
<property>

Field Type Audio Output String Result

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#14.1
http://cafe.bevocal.com/docs/grammar/index.html

100 VOICEXML REFERENCE

TAG REFERENCE

Examples

Example 1 - no type:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<field name="name">
<prompt> What is your favorite color? </prompt>
<grammar>
[red green yellow blue orange]

</grammar>
<filled>
<prompt> Your favorite color is <value expr="name"/> </prompt>
</filled>

</field>
</form>

</vxml>

Example 2 - boolean type:

<?xml version="1.0"?>
<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="new_file" type="boolean">
<prompt>
Do you want to play the game again?

</prompt>
<filled>
<prompt>
Your answer is <value expr="new_file"/>

</prompt>
</filled>

</field>
</form>

</vxml>

VOICEXML REFERENCE 101

<field>

Example 3 - date type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="today" type="date">
<prompt>
What date is today? Please say or enter month day and year.

</prompt>
<filled>
<prompt>
Your answer is <value expr="today"/>

</prompt>
</filled>

</field>
</form>

</vxml>

Example 4 - digits type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="card_num" type="digits">
<prompt>
Please say or enter the last four digits of your credit card.

</prompt>
<filled>
<if cond="card_num.length != 4">
<prompt>
Sorry, I didn’t hear exactly four digits.

</prompt>
<clear/>
<reprompt/>

<else/>
<prompt>The number you entered is <value expr="card_num"/></prompt>

</if>
</filled>

</field>
</form>

</vxml>

102 VOICEXML REFERENCE

TAG REFERENCE

Example 5 - currency type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="ticket_cost" type="currency">
<prompt>
Please say the cost of your ticket.

</prompt>
<filled>
<prompt>The cost you entered is <value expr="ticket_cost"/></prompt>

</filled>
</field>

</form>
</vxml>

Example 6 - number type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="num_count" type="number">
<prompt>
Please say the number of computers you want to order.

</prompt>
<filled>
<prompt>The number you entered is <value expr="num_count"/></prompt>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 103

<field>

Example 7 - phone type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="phone_num" type="phone">
<prompt>
Please say or enter your phone number.

</prompt>
<filled>
<prompt>The number you entered is <value expr="phone_num"/></prompt>

</filled>
</field>

</form>
</vxml>

Example 8 - time type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="meeting_time" type="time">
<prompt>
Please say the meeting time.

</prompt>
<filled>
<prompt>The meeting time is <value expr="meeting_time"/></prompt>

</filled>
</field>

</form>
</vxml>

104 VOICEXML REFERENCE

TAG REFERENCE

Example 9 - airport type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="airport1" type="airport">
<filled>
<prompt> The value is <value expr="airport1"/> </prompt>
<prompt> The city is <value expr="airport1.city"/> </prompt>
<prompt> The state is <value expr="airport1.state"/> </prompt>
<prompt> The code is <value expr="airport1.code"/> </prompt>

</filled>
</field>

</form>
</vxml>

Example 10 - airline type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="airline1" type="airline">
<filled>
<prompt> The value is <value expr="airline1"/> </prompt>
<prompt> The name is <value expr="airline1.name"/> </prompt>
<prompt> The code is <value expr="airline1.code"/> </prompt>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 105

<field>

Example 11 - equity type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="equityForm">
<field name="equity1" type="equity">
<filled>
<prompt> The value is <value expr="equity1"/> </prompt>
<prompt> The name is <value expr="equity1.name"/> </prompt>
<prompt> The symbol is <value expr="equity1.symbol"/> </prompt>
<clear/>

</filled>
</field>

</form>
</vxml>

Example 12 - street type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="street1" type="street?city=austin;state=tx">
<filled>
<prompt> The value is <value expr="street1"/> </prompt>

</filled>
</field>

</form>
</vxml>

Example 13 - streetnumber type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="streetnumber1"
type="streetnumber?city=austin;state=tx;street=heiden_lane">
<filled>
<prompt> The value is <value expr="streetnumber1"/> </prompt>

</filled>
</field>

</form>
</vxml>

106 VOICEXML REFERENCE

TAG REFERENCE

Example 14 - citystate type:

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<field name="citystate1" type="citystate">
<filled>
<prompt> The value is <value expr="citystate1"/> </prompt>
<prompt> The city is <value expr="citystate1.city"/> </prompt>
<prompt> The state is <value expr="citystate1.state"/> </prompt>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 107

<filled>

<filled>

Contain actions to be executed when fields are filled.

Syntax

<filled
mode="any"|"all"
namelist="variable1 ...">

Child Elements
</filled>

Description

A <filled> element can be either the child of a field item or the child of a form.

• When used as the child of a field item, the <filled> element has no attributes;
its action is taken when the last user input fills the field item variable of the
containing element.

• When used as the child of a form, the <filled> element may have attributes
that specify when its action is taken.

It is an error to specify attributes in a <filled> element within a field item.

Attribute Description

mode A value of "any" causes execution of this element when the
last user input fills any one of the specified field item variables.
A value of "all" causes execution of this element when all
specified field item variables are filled; the last user input must
have filled at least one of the fields. Optional (default value is
"all").

namelist Space separated list of names of the field item variables whose
filling can trigger this element. Optional (default is all field item
variables in the form).

108 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<filled>

• Related tag:
“<field>” on page 95

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<field name="name">
<prompt> What is your favorite color ? </prompt>
<grammar>
[red green yellow blue orange]

</grammar>
<filled>
<prompt> Your favorite color is <value expr="name"/> </prompt>

</filled>
</field>

</form>
</vxml>

Parents Children

<form>
<field>
<record>
<transfer>
<subdialog>
<object>

<audio>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s15

VOICEXML REFERENCE 109

<form>

<form>

Present information and collect data.

Syntax

<form
id="string"
scope="document"|"dialog">

Child Elements
</form>

Description

A dialog for collecting user input. Note that when you reach the end of a form,
execution does not proceed to the next form on the page. If you do not explicitly
transition to another dialog using <goto> or <submit>, then the application
terminates when the form completes.

Usage

Attribute Description

id The name of the form. VoiceXML Reference

scope Sets the default scope of the form’s grammars. Optional
(default is "dialog").
• document - The form’s grammars are active throughout the

current document. If the document is the application root
document, then they are active throughout the application
(application scope).

• dialog - By default, the form’s grammars have dialog scope,
which means they will be active only in this form.

Parents Children

<vxml> <dtmf>
<grammar>
<catch>
<help>
<noinput>
<nomatch>
<error>
<filled>
<initial>
<object>
<link>
<property>
<record>
<subdialog>
<transfer>
<block>
<field>
<var>
<script>

110 VOICEXML REFERENCE

TAG REFERENCE

See Also

• VoiceXML 1.0 Specification:
<form>

• Related tags:
“<field>” on page 95
“<block>” on page 63
“<record>” on page 157
“<transfer>” on page 185
“<object>” on page 140
“<subdialog>” on page 177
“<initial>” on page 124
“<grammar>” on page 115

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s6

VOICEXML REFERENCE 111

<form>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="welcome">
<block>You are in Form One. Welcome back home! </block>
<field name="hello">
<grammar>[(next) (dtmf-1) start]</grammar>
<prompt>
Say next or press one to go to Form 2 or start to start over again.

</prompt>
<filled>
<if cond="hello==’next’|| hello==’dtmf-1’">
<goto next="#comeagain"/>

<else/>
<goto next="#welcome"/>

</if>
</filled>

</field>
</form>
<form id="comeagain">
<block>You are now in Form 2.</block>
<field name="goback" type="boolean">
<grammar>[(back) (dtmf-2) continue]</grammar>
<prompt>
Say back or press two to go to Form 1 or say continue
to enter this form again.

</prompt>
<filled>
<if cond="goback==’back’|| goback==’dtmf-2’">
<prompt>Thanks for stopping by Form 2. Please come again.</prompt>
<goto next="#welcome"/>

<else/>
<goto next="#comeagain"/>

</if>
</filled>

</field>
</form>

</vxml>

112 VOICEXML REFERENCE

TAG REFERENCE

<goto>

Go to another location in the same or different document.

Syntax

<goto
next="URL"
expr="js_expression"
expritem="js_expression"
nextitem="URL"
submit="variable1 ..."
method="get"|"post"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" />

Description

Transitions to another item in the same form, to another dialog in the same
document, or to a different document. Except when the transition is to another item
in the same form, the transition will cause all values stored in the dialog’s variables
to be lost. This is true even if you transition into the same dialog as you were in
before.

The VoiceXML interpreter clears its prompt queue when transitioning to another form
item. You will not be able to barge in during prompts played in the execution of a
<goto> tag.

Attribute Description

next The URL to go to next. Optional (as alternative to expr,
expritem, nextitem).

expr JavaScript expression that evaluates to the URL to go to next.
Optional (as alternative to next, expritem, nextitem).

expritem JavaScript expression that evaluates to the name of the next
item in the current form to visit next. Optional (as alternative to
next, expr, nextitem).

nextitem Name of the next item in the current form to visit next. Optional
(as alternative to next, expr, expritem, nextitem).

submit Extension. Space separated list of variables to submit. Optional
(default is to submit no form item variables).

method Extension. The query request method. Optional (default is
"get").

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

Note: If this element sends variables to the server with the
submit attribute, a "prefetch" value for the fetchhint
attribute is ignored.

VOICEXML REFERENCE 113

<goto>

One and only one of the attributes next, expr, nextitem, and expritem must be
specified.

Note: the submit and method attributes are extensions, included for compatibility
with Nuance VBuilder output. If you are writing your own VoiceXML code, we
strongly recommend that you use the standard <submit> tag instead.

Usage

See Also

• VoiceXML 1.0 Specification:
<goto>

• Related tag:
“<submit>” on page 181

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.7

114 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!--Verifies transitions between dialogs.-->

<var name="something" expr="0"/>
<form id="form1">
<block>
<assign name="something" expr="500"/>
<prompt>
You are in first dialog. something is
<value expr="something"/>
Going to second dialog.

</prompt>
<goto next="#form2"/>
<prompt>goto failed</prompt>

</block>
</form>
<form id="form2">
<block>
<prompt>
You are now in the second dialog something is
<value expr="something"/>
Thank you.

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 115

<grammar>

<grammar>

Specify a speech-recognition grammar.

Syntax

<grammar
xml:lang="language"
src="URL"
expr="js_expression"
scope="document"|"dialog"
type="MIME_type"
mode="voice"|"dtmf"
root="string"
version="version_number"
universal="string"
ruleset="true"|"false" >
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
maxage="time_interval"
maxstale="time_interval"

Optional Inline Grammar
</grammar>

Description

Defines a set of valid utterances. When the speech-recognition engine detects a
match with a grammar, it may cause a transition to another dialog (if the grammar is
in a menu item or link) or assign a return value to assign to a field item variable (if the
grammar is in a form or field item).

Attribute Description

xml:lang Extension. The language and optional country local identifier
for the grammar. Optional (default is "en-US")

The accepted language identifiers are:
• en - English
• en-US - United States English

116 VOICEXML REFERENCE

TAG REFERENCE

src URL of the grammar specification, when it is contained in an
external file. Optional (as an alternative to an inline grammar or
expr).

The URL may have any one of the following forms:
• GSL independent grammar:
gslGrammarFileURL#rootRuleName

• GSL rule set:
gslGrammarFileURL

• Independent grammar in Nuance Condensed Grammar file
(the file identifies its root rule):
gscGrammarFileURL

• Independent grammar in XML Grammar file:
xmlGrammarFileURL#rootRuleName

• Independent grammar in XML Grammar file; the grammar’s
default rule is used as the root rule:
xmlGrammarFileURL

• Built-in Independent grammar:
builtin:grammar/type

expr Extension. JavaScript expression that evaluates to grammar
file URL. Optional (as alternative to src).

scope Sets the scope of the grammar.
• document - the grammar will be active throughout the

current document. If the document is the application root
document, then it will be active throughout the application
(application scope).

• dialog - the grammar is active throughout the current form.

Note: A <grammar> element can include a scope attribute
only if its parent is a <form> element or a <menu> element.
Optional (default is dialog).

The scope of any other <grammar> element is determined by
its parent:
• If the parent is a field item, the grammar has field scope.
• If the parent is a link, the scope is the element that contains

the link.
• If the parent is a menu choice, the grammar scope is

specified by the scope property of the containing <menu>
element (or dialog scope by default).

type MIME type of the grammar. Optional (default is
"application/x-gsl").

The currently supported types are:
• application/x-gsl - Nuance GSL
• application/x-gsc - Nuance Condensed Grammar
• application/grammar+xml - XML Speech Grammar

If you specify an unsupported type, an error is thrown.

mode Extension. The mode of the contained or referenced grammar.
Optional (default is "voice").
• voice - Spoken input
• speech - Deprecated. Use "voice" instead.
• dtmf - DTMF input. (Not supported for XML grammars.)

Attribute Description

VOICEXML REFERENCE 117

<grammar>

Since grammars are scoped, multiple grammars may be active at the same time.
When the speech-recognition engine detects a match from a higher level, control is
passed to that grammar’s parent element.

Usage

See Also

• VoiceXML 1.0 Specification:
<grammar>

• Grammar Reference

root Extension. If this grammar is an inline XML grammar, this
attribute can specify the name of the root grammar rule.
Optional (if omitted, the grammar’s default rule is used).

version Extension. Version of the grammar. Optional (default is
"1.0").

The only allowed version is "1.0".

universal Extension. Makes this grammar a “universal” grammar with the
specified name so that it can be activated and deactivated
using the universals property. This attribute does not affect
the scope of the grammar; it simply assigns it to a universal
category.

ruleset Extension. If this grammar is an inline or external Nuance GSL
grammar, this attribute can specify that it is a rule set that can
be referred to from other active GSL grammars rather than
being an active grammar in its own right. Optional (default is
"false".)
• true - This grammar contains a rule set—that is, one or

more named rules that can be used as subgrammars by
other grammar rules that are in scope

• false - This grammar contains an independent grammar
rule, to be used as an active grammar

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<form>
<choice>
<field>
<link>
<record>
<transfer>

None.

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s10
http://cafe.bevocal.com/docs/grammar/index.html

118 VOICEXML REFERENCE

TAG REFERENCE

Examples

Example 1 - external independent GSL grammar:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="uscitystate">
<field name="state">
<grammar src="uscitystate.grammar#STATES"/>
<prompt> Do you want California or Texas? </prompt>

</field>
<field name="city">
<grammar expr="’uscitystate.grammar#CITIES_’ + state"/>
<prompt> Say a city in <value expr="state"/> </prompt>

</field>
<block>
You said <value expr="city"/> and <value expr="state"/>

</block>
</form>

</vxml>

VOICEXML REFERENCE 119

<grammar>

Example 2 - external GSL rule-set grammar:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<!-- Document-scoped rule sets -->
<grammar ruleset="true" src="scopedRulesets.grammar"/>
<grammar ruleset="true">
DocRule [doc]

</grammar>
<catch event="docmatch">
<prompt> Got doc level link match </prompt>

</catch>
<link event="docmatch">
<grammar>
[DocRule FormDownRule ItemDownRule EXTERNAL_DOC_RULE]

</grammar>
</link>

<form id="firstform">
<grammar ruleset="true">
<!-- Form-scoped rule set with rule used in field grammar -->
FormRule [form EXTERNAL_FORM_RULE]
<!-- Form-scoped rule set with rule used in link grammar -->
FormDownRule [apples]

</grammar>
<field name="fieldval">
<prompt> try me out, i am cool </prompt>
<!-- Field-scoped ruleset with rule used in link grammar -->
<grammar ruleset="true">
ItemDownRule [oranges]

</grammar>
<!-- Field-scoped independent grammar rule -->
<grammar>
ItemRule [FormRule field]

</grammar>
<filled>
<prompt> you said <value expr="fieldval"/> </prompt>
<clear/>

</filled>
</field>

</form>
</vxml>

The external grammar file scopedRulesets.grammar follows:

EXTERNAL_DOC_RULE [
external_doc

]

EXTERNAL_FORM_RULE [
external_form

]

120 VOICEXML REFERENCE

TAG REFERENCE

<help>

Catch a help event.

Syntax

<help
count="integer"
cond="js_expression">

Executable Content
</help>

Description

If multiple handlers for help events are defined in, or inherited by, the element in
which the events occurs, one handler is chosen based on event count, scope, and
document order.

A help event is thrown whenever user input matches the predefined "help"
universal grammar.

• In VoiceXML 1.0, all universal grammars are active by default. You can
deactivate the "help" grammar by setting the universals property. The
following tag deactivates all universal grammars, including "help":

<property name="universals" value="none" />

The following tag deactivates the "help" grammar and activates the other
predefined universal grammars:

<property name="universals" value="exit cancel goback"/>

• When the <vxml> tag’s version attribute equals 2.0, all universal grammars
are deactivated by default. You can activate the "help" grammars by setting
the universals property. The following tag activates all universal grammars,
including "help":

<property name="universals" value="all" />

The following tag activates the "help" grammar and deactivates the other
predefined universal grammars:

<property name="universals" value="help"/>

For additional information about universal grammars, see “Universal Grammars” on
page 20.

Attribute Description

count Minimum number of times an error must have occurred during
a form or menu invocation. Optional (default is "1").

cond JavaScript expression that must also evaluate to "true" for an
event to be caught. Optional (default is "true").

VOICEXML REFERENCE 121

<help>

Usage

See Also

• VoiceXML 1.0 Specification:
<help>

• Related tags:
“<catch>” on page 67
“<error>” on page 90
“<noinput>” on page 136
“<nomatch>” on page 138
“<rethrow>” on page 162
“<throw>” on page 183

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<field name="sports">
<grammar> [football basketball tennis skiing] </grammar>
<help>Please say one of football, basketball, tennis or skiing</help>
<prompt> What is your favorite sport ?</prompt>
<filled>
<prompt>
Looks like <value expr="sports"/> is your favorite sports.

</prompt>
</filled>

</field>
</form>

</vxml>

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.3

122 VOICEXML REFERENCE

TAG REFERENCE

<if>

Container for simple conditional logic.

Syntax

<if
cond="js_expression">

Executable Content
</if>

Description

Usage

See Also

• VoiceXML 1.0 Specification:
<if>

• Related tags:
“<else>” on page 83
“<elseif>” on page 85

Attribute Description

cond JavaScript expression that evaluates to a boolean value that must
be "true" for the “if” clause to execute. Optional (default is
"true").

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<elseif>
<else>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.4

VOICEXML REFERENCE 123

<if>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form">
<field name="hello">
<grammar>[(one) (dtmf-1) goodbye]</grammar>
<prompt>Say one or press one to continue or say goodbye to exit.</prompt>
<nomatch>Sorry, I did not get it.<reprompt/></nomatch>
<filled>
<if cond="hello==’one’ || hello==’dtmf-1’">
<prompt> Welcome to this part of the world. </prompt>

<else/>
<prompt> Sorry you could not have much fun. Goodbye </prompt>

</if>
</filled>

</field>
</form>

</vxml>

124 VOICEXML REFERENCE

TAG REFERENCE

<initial>

Declare initial logic upon entry into a (mixed-initiative) form.

Syntax

<initial
name="string"
expr="js_expression"
cond="js_expression">

Child Elements
</initial>

Description

Control item that controls the initial interaction in a mixed initiative form. An
<initial> element can request user input or perform other non-interactive
initialization tasks at the beginning of a mixed initiative form. As with all form items,
an <initial>’s form item variable must have a value of "undefined" in order to
be visited.

If any of the form’s fields are filled as a result of user input, the interpreter sets all
<initial> form item variables to "true" before performing any <filled>
actions. After that, it will request user input in a “directed mode” based on the
prompts associated with the fields that are still unfilled.

Attribute Description

name Name of form item variable, which may not be a JavaScript reserved
keyword. Optional (default is an unusable internal name).

The form item variable has dialog (form) scope; its name must be
unique among all VoiceXML and JavaScript variables within the
form’s scope.

Generally, you use this attribute only if you want to control
<initial> execution explicitly.

expr JavaScript expression that assigns the initial value of the form item
variable. Optional (default is "undefined").

If you set the form item variable to a value other than "undefined",
you’ll need to clear it before the <initial> element can execute.
Note that you need to give the form item variable a name if you want
to clear it separately from other form item variables.

cond JavaScript boolean expression that must also evaluate to "true" for
the <initial> element to execute. Optional (default is "true").

If not specified, the value of the form item variable alone determines
whether or not the <initial> element can execute.

VOICEXML REFERENCE 125

<initial>

Usage

See Also

• VoiceXML 1.0 Specification:
<initial>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<grammar src="foo.grammar#Main"/>
<nomatch> Okay , let me ask you one by one.
<assign name="selection" expr="true"/>

</nomatch>
<initial name="selection">
Please say how many apples or oranges you want.

</initial>
<field name="fruit">
<grammar src="foo.grammar#Fruit"/>
Do you want apples or oranges?

</field>
<field name="quantity">
<grammar src="foo.grammar#Quantity"/>
How many <value expr="fruit"/> do you want?

</field>
<block>
<prompt>
You said that you wanted
<value expr="quantity"/>
pieces of
<value expr="fruit"/>.

</prompt>
</block>

</form>
</vxml>

Parents Children

<form> <audio>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<link>
<prompt>
<property>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.3

126 VOICEXML REFERENCE

TAG REFERENCE

<link>

Specify a transition common to all dialogs in the link’s scope.

Syntax

<link
next="URL"
expr="js_expression"
event="event"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" >

Link Grammar
</link>

Description

Transitions to another dialog or throws an event when user input matches one of the
link grammars. In the first case, execution jumps to the link’s destination; in the
second case execution resumes in the current dialog after the event is handled.

The VoiceXML interpreter clears the prompt queue when going to another form. You
will not be able to barge in during prompts played in the execution of a <link> tag
which goes to another form.

Attribute Description

next The URL to go to when user input matches one of the link
grammars. Optional (as alternative to expr, event).

expr JavaScript expression that evaluates to the URL to go to when
user input matches one of the link grammars. Optional (as
alternative to next, event).

event The event to throw when user input matches one of the link
grammars. Optional (as alternative to next, expr).

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

VOICEXML REFERENCE 127

<link>

Tips:

• During application development, put a link like the following in your application
root document, so that while you’re calling your application you can say:
“BeVocal reload” or press: *** to start the application again.

<vxml>
<link caching="safe"
next="<http://www.mysite.com/myapp.vxml>">
<grammar>
[
(bevocal reload)
(dtmf-star dtmf-star dtmf-star)

]
</grammar>

</link>
...

</vxml>

Usage

See Also

• VoiceXML 1.0 Specification:
<link>

Parents Children

<vxml>
<form>
<field>
<initial>

<dtmf>
<grammar>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s8

128 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<link caching="safe" next="target.vxml">
<grammar>
[
(bevocal reload)
(dtmf-star dtmf-star dtmf-star)

]
</grammar>

</link>

<form id="form">
<field name="welcome">
This is a test for link tag.
You can say bevocal reload or enter star star star to reload this
application.

</field>
</form>

</vxml>

VOICEXML REFERENCE 129

<log>

<log>

Extension. Write debugging information to a the BeVocal Café call log, which you
can view on the Café website.

Syntax

<log
label="string"
expr="js_expression" >

Debugging Text
</log>

Description

This tag is an extension to the BeVocal VoiceXML 1.0 platform. This tag replaces
the deprecated <debug> tag.

Similar functionality is available within a JavaScript using the bevocal.log
function.

A <log> element may write one or two messages to the call log. It writes one
message corresponding to the expr attribute, if any, and one message
corresponding to the contained debugging text, if any. If the element has a label
attribute, the specified label precedes each message.

Usage

See Also

None

Attribute Description

label A string that is added as a label to messages produced by this
<log> element. Optional (default is no label on the messages).

expr JavaScript expression that evaluates to a string to be added to
the call log as a separate message. Optional.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

<value>

130 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<!-- Print current value of num and fruit variables -->
<block name="dbg">
<log>
num: <value expr="num"/>
fruit: <value expr="fruit"/>

</log>
</block>
<field name="num" type="number">
<prompt>Say a number.</prompt>

</field>
<field name="fruit">
<grammar> [apples oranges] </grammar>
<prompt>Do you want apples or oranges?</prompt>

</field>
<filled mode="any" namelist="num fruit">
<clear namelist="dbg"/>

</filled>
<block>
<log>
End of form foo reached

</log>
</block>

</form>
</vxml>

VOICEXML REFERENCE 131

<menu>

<menu>

Allow user to choose between alternative destinations.

Syntax

<menu
id="string"
scope="document"|"dialog"
dtmf="dtmf_sequence"
accept="exact"|"approximate"

Child Elements
</menu>

Description

Dialog that transitions to <choice> destinations based on user input.

Attribute Description

id Menu identifier. Optional.

Lets you specify this menu as the target for a <goto> or <submit>.

scope Sets the scope of the menu’s grammar. Optional (default is
"dialog").
• document - The menu’s grammar is active throughout the current

document. If the document is the application root document, then it
is active throughout the application (application scope).

• dialog - The menu’s grammar is active only in the current menu.

dtmf Enables DTMF selection for all choices in this menu. Optional (default
is "false").
• true - For <choice> elements that do not explicitly specify a

DTMF (touch tone) sequence using the dtmf attribute, the
interpreter assigns DTMF selectors of "1", "2", ... to those
choices, in document order.

• false - The interpreter does not make implicit DTMF assignments
to menu choices with no DTMF sequences.

accept Extension. Specifies whether the default grammars generated for
<choice> elements require all words or accept a subset of the
words.
• exact - Requires the user to say the exact phrase that appears in

the <choice> element.
• approximate - Allows the user to say a subset of the words in the

<choice> element.

Note: For backward compatibility, the default is "approximate" if
the version attribute of the containing <vxml> element is less than
2.0 or unspecified. The default is "exact" if the version attribute
is 2.0 or greater.

132 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<menu>

• Related tags:
“<choice>” on page 70
“<enumerate>” on page 88

Parents Children

<vxml> <audio>
<enumerate>
<value>
<choice>
<catch>
<help>
<noinput>
<nomatch>
<error>
<prompt>
<property>
<script>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s7

VOICEXML REFERENCE 133

<menu>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<menu id="mainMenu" >
<prompt>
This is main menu. Please choose from
<enumerate/> to complete your order.

</prompt>
<choice next="#dateForm"> date </choice>
<choice next="#quantityForm"> quantity </choice>
<choice next="#phoneForm"> phone </choice>

</menu>
<form id="dateForm">
<field name="date" type="date">
<prompt> What date would you like to pick up your order?</prompt>
<filled>
<prompt>
Just to confirm, I heard you saying <value expr="date"/>
to pick up.

</prompt>
</filled>

</field>
<block>
<goto next="#quantityForm" />

</block>
</form>
<form id="quantityForm">
<field name="quantity" type="number">
<prompt> How many bags of candies would you like to order?</prompt>
<filled>
<prompt>
Okay, <value expr="quantity"/>
bags of candies would be ordered.

</prompt>
</filled>

</field>
<block>
<goto next="#phoneForm" />

</block>
</form>
<form id="phoneForm">
<field name="phone" type="phone">
<prompt>
What number should I call to reach you when the order is ready?

</prompt>
<filled>
<prompt> I guess <value expr="phone"/> is your home number.</prompt>

</filled>
</field>

</form>
</vxml>

134 VOICEXML REFERENCE

TAG REFERENCE

<meta>

Define a meta data item as a name/value pair.

Syntax

<meta
name="string"
content="string"
http-equiv="string" />

Description

Usage

See Also

• VoiceXML 1.0 Specification:
<meta>

Attribute Description

name Name of the meta-data property.

For general document information such as: author, copyright,
description, keywords, etc.

Set the name attribute to "maintainer" to have the trace log
emailed to the user specified in the content attribute after the
call.

content Value of the meta-data property.

http-equiv Name of an HTTP response header. Optional (as an alternative
to name).

For HTTP response headers such as Expires or Date.

Parents Children

<vxml> None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s16

VOICEXML REFERENCE 135

<meta>

Examples

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!--Replace myName@myCompany.com with your emailAddress in the meta tag line.-->

<meta name="author" content="bevocal"/>
<meta name="maintainer" content="myName@myCompany.com" />
<form>
<block>
<prompt>
Welcome to the BeVocal Cafe. The client log is E mailed to the maintainer.
Please check your email.

</prompt>
</block>

</form>
</vxml>

136 VOICEXML REFERENCE

TAG REFERENCE

<noinput>

Catch a no-input event.

Syntax

<noinput
count="integer"
cond="js_expression">

Executable Content
</noinput>

Description

If multiple handlers for no-input events are defined in, or inherited by, the element in
which the events occurs, one handler is chosen based on event count, scope, and
document order. See Chapter 3, “Event Handling”.

Usage

See Also

• VoiceXML 1.0 Specification:
<noinput>

• Related tags:
“<catch>” on page 67
“<error>” on page 90
“<help>” on page 120

Attribute Description

count Minimum number of times an error must have occurred during
a form or menu invocation. Optional (default is "1").

cond JavaScript expression that must also evaluate to "true" for an
event to be caught. Optional (default is "true").

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.3

VOICEXML REFERENCE 137

<noinput>

“<nomatch>” on page 138
“<rethrow>” on page 162
“<throw>” on page 183

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<noinput>
Sorry I did not hear what you said
<reprompt/>

</noinput>
<form id="foo">
<field name="name">
<prompt> What is your favorite color ? </prompt>
<grammar> [red green yellow blue orange] </grammar>
<filled>
<prompt> Your favorite color is <value expr="name"/> </prompt>

</filled>
</field>

</form>
</vxml>

138 VOICEXML REFERENCE

TAG REFERENCE

<nomatch>

Catch a no-match event.

Syntax

<nomatch
count="integer"
cond="js_expression">

Executable Content
</nomatch>

Description

If multiple handlers for no-match events are defined in, or inherited by, the element in
which the events occurs, one handler is chosen based on event count, scope, and
document order. See Chapter 3, “Event Handling”.

Usage

See Also

• VoiceXML 1.0 Specification:
<nomatch>

• Related tags:
“<catch>” on page 67
“<error>” on page 90
“<help>” on page 120

Attribute Description

count Minimum number of times an error must have occurred during
a form or menu invocation. Optional (default is "1").

cond JavaScript expression that must also evaluate to "true" for an
event to be caught. Optional (default is "true").

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

<audio>
<enumerate>
<value>
<assign>
<clear>
<disconnect>
<exit>
<goto>
<if>
<prompt>
<reprompt>
<return>
<script>
<submit>
<throw>
<var>
<log>
<send>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.3

VOICEXML REFERENCE 139

<nomatch>

“<noinput>” on page 136
“<rethrow>” on page 162
“<throw>” on page 183

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<nomatch>
Please say one of red green yellow blue or orange

</nomatch>
<form id="foo">
<field name="name">
<prompt> What is your favorite color ? </prompt>
<grammar> [red green yellow blue orange] </grammar>
<filled>
<prompt> Your favorite color is <value expr="name"/> </prompt>

</filled>
</field>

</form>
</vxml>

140 VOICEXML REFERENCE

TAG REFERENCE

<object>

Interact with a custom extension.

Syntax

<object
name="string"
expr="js_expression"
cond="js_expression"
classid="speechobject//name.source"
modal="true"|"false"
data="URL"
codebase="URL"
type - not implemented
codetype - not implemented
archive="URL"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" >

Child Elements
</object>

Description

Field item that invokes reusable Speech Object components (supports Nuance
SpeechObjects).

The field item variable for <object> contains a property corresponding to the
specific Speech Object that was executed. The property name corresponds to the
key in which that value is stored in the SpeechObject result class KVSet. See the
SpeechObjects Reference for more details.

Attribute Description

name Field item variable used to store the results of the <object>
invocation. The variable name may not be a JavaScript
reserved keyword.

The field item variable has dialog (form) scope; its name must
be unique among all VoiceXML and JavaScript variables within
the form’s scope.

The result is returned as a JavaScript object. You can access
the return value elements using the following notation:
name.outParam1, name.outParam2

expr JavaScript expression that assigns the initial value of the field
item variable. Optional (default is "undefined").

If you set the field item variable to a value other than
"undefined", you’ll need to clear it before the <object>
can execute.

http://cafe.bevocal.com/docs/so/index.html

VOICEXML REFERENCE 141

<object>

cond JavaScript boolean expression that also must evaluate to
"true" for the <object> to be invoked. Optional (default is
"true").

If not specified, the value of the field item variable alone
determines whether or not the <object> can execute.

classid URL of the object’s implementation. Currently, the only
supported objects are Nuance SpeechObjects. As a
consequence, the URL must consist of "speechobject://"
followed by the fully-qualified class name of the SpeechObject.
For example:
"speechobject://nuance.so.SODate"

See SpeechObjects Reference for a list of BeVocal speech
objects.

If the object is not found, the interpreter throws an
error.unsupported.object event.

modal Extension.

Boolean value that controls whether higher level grammars are
active during execution of the Speech Object.
• "true" - Interaction is modal; only the Speech Object’s

grammary are active while the object executes; higher level
grammars are not active.

• "false" - Higher level grammars are active while the object
executes.

Optional (default is "true").

data URL of the Java Archive (JAR) or Zip archive containing
prompts used by this SpeechObject. The URL can be specify
an absolute location or a location relative to the codebase
path. Optional.

Each prompt file in the archive will be unpacked into a
temporary directory that is placed at the beginning of the
SpeechObject’s prompt path. Relative paths of files in the
archive are preserved, but the SpeechObject must refer to the
prompts using the complete paths. For example, if the archive
file includes a file named prompts/myprompts/hello.wav,
then the SpeechObject should refer to the prompt by exactly
that path rather than just by hello.wav.

codebase The base path used to resolve relative URLs specified by the
data and archive attributes. Optional (defaults is the base
URL of the current document).

type Not implemented.

codetype Not implemented.

archive URL of the object’s data; that is, the Java Archive (JAR) file
containing the object’s Java class files. The URL can be specify
an absolute location or a location relative to the codebase
path.

The specified file is downloaded and cached according to the
normal caching rules; then, the object specified by the
classid attribute is loaded from the file.

Attribute Description

http://cafe.bevocal.com/docs/so/index.html

142 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<object>

• SpeechObjects Reference

• Related tag:
“<subdialog>” on page 177

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<block name="welcome">
This is a test for nuance speech object s o date.

</block>
<object classid="speechobject://nuance.so.SODate" name="date">
<filled>
<prompt> The month is <value expr="date.Month"/> </prompt>
<prompt> The day of month is <value expr="date.DayOfMonth"/> </prompt>
<prompt> The day of week is <value expr="date.DayOfWeek"/> </prompt>
<clear/>

</filled>
</object>

</form>
</vxml>

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<form> <audio>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<filled>
<param>
<prompt>
<property>

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.5
http://cafe.bevocal.com/docs/so/index.html

VOICEXML REFERENCE 143

<option>

<option>

Specify an option in a <field>.

Syntax

<option
value="string"
dtmf="dtmf_sequence">

Option Text
</object>

Description

Provide one of a simple set of alternatives within a field without specifying a
grammar. A grammar for the field is generated automatically, based on the option
list. You can use <enumerate> to generate prompts automatically based on option
lists as well.

Usage

See Also

• VoiceXML 1.0 Specification:
<option>

• Related tags:
“<field>” on page 95
“<choice>” on page 70
“<enumerate>” on page 88

Attribute Description

value String to assign to the field item variable when this item is
selected. Optional (default is the value of the dtmf attribute, if
any, otherwise, the option text itself with leading and trailing
white space removed).

dtmf DTMF sequence to assign to this option. Optional.

Parents Children

<field> None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#14.1.3

144 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="mainform">
<block name="welcome">
This is a test for option tag.

</block>
<catch event="nomatch noinput">
<prompt> Sorry, I didn't understand. </prompt>
<reprompt/>

</catch>
<field name="mainmenu">
<prompt>
Please select an application from the list of
Driving Directions, Stock Quotes, Business Finder.

</prompt>
<option value="Directions"> Driving Directions </option>
<option value="Portfolio"> Stock Quotes </option>
<option value="Stores"> Business Finder </option>
<filled>
<prompt>You chose <value expr="mainmenu"/> </prompt>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 145

<param>

<param>

Specify a parameter in <object> or <subdialog>.

Syntax

<param
name="string"
expr="js_expression"
value="string"
valuetype - not implemented
type="MIME_type"
index="integer"

Nested Param Element
</param>

Description

Passes values to objects or subdialogs.

When a <param> element is used to pass a parameter to a subdialog, the subdialog
must contain a <var> declaration for the parameter. If the <var> contains an
initializing expr attribute, that initializing value is ignored and the value passed with
the <param> element is used instead.

Usage

See Also

• VoiceXML 1.0 Specification:
<param>

Attribute Description

name Parameter name.

expr JavaScript expression that evaluates to the value of this
parameter. Optional (as alternative to value).

value String to assign as the value of this parameter. Optional (as
alternative to expr).

valuetype Not implemented.

type Type of the value attribute (following Nuance precedent).
Optional.

If not specified and parent is a Speech Object, the type of the
Speech Object parameter is used when assigning the value.

index Extension. Index of current <param> element. Optional.

Use when parent <param> element is a vector
(java.lang.Vector) or an array.

Parents Children

<param>
<subdialog>
<object>

<param>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s18

146 VOICEXML REFERENCE

TAG REFERENCE

• Related tags:
“<object>” on page 140
“<subdialog>” on page 177

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form1">
<object classid="speechobject://nuance.so.SOBrowsableList" name="SOBrowsable1">
<param name="browsable" type="bevocal.cafe.BVBrowsableVector">
<param name="playableVector" type="java.util.Vector">
<param index="0" type="vcommerce.util.prompt.TTSPrompt">
<param name="text" expr="’apples’" />

</param>
<param index="1" type="vcommerce.util.prompt.TTSPrompt">
<param name="text" expr="’pears’" />

</param>
<param index="2" type="vcommerce.util.prompt.TTSPrompt">
<param name="text" expr="’oranges’" />

</param>
</param>

</param>
</object>

</form>
</vxml>

VOICEXML REFERENCE 147

<prompt>

<prompt>

Queue TTS and audio output to the user.

Syntax

<prompt
bargein="true"|"false"
cond="js_expression"
count="integer"
timeout="time_interval">

Prompt Text
</prompt>

Description

Uses TTS to convey information to the user. If the prompt consists of simple text
only, you can omit the prompt tags and the text will be interpreted as if they were
present.

Tips:

• Set the hotword attribute to "true" if you have a long audio segment that you
only want interrupted by in-grammar utterances.

• You can use the hotword property to enable hotword behavior by default. See
“<property>” on page 151. As with bargein, the value of the hotword attribute

Attribute Description

bargein Determines whether user input will be recognized during the prompt.
Optional (default is "true").

hotword Extension. Determines whether only speech that matches a grammar
can interrupt the prompt. Optional (default is "false").

By default, any user utterance will interrupt the prompt. Only applies
when bargein is "true".

cond JavaScript boolean expression that must evaluate to "true" for the
prompt to be spoken.

count Minimum number of times the user must have visited the form item
containing the prompt for the prompt to be spoken. Optional (default
is "1").

Lets you vary prompts if the user is having problems and revisits the
form same item several times. Form item prompt counters are reset
with each invocation of the form.

timeout Time to wait before throwing a no-input event. Optional (default value
is "5s" and default unit is seconds).

Express time interval as an unsigned number followed by "s" for
time in seconds; "ms" for time in milliseconds.

148 VOICEXML REFERENCE

TAG REFERENCE

takes precedence over scoped occurrences of the hotword property. For
example:
<form>
<property name="hotword" value="true"/>
<field name="first">
<prompt> This prompt will have hotword
enabled.

</prompt>
</field>
<field name="second">
<property name="hotword" value="false"/>
<prompt> This prompt will not have hotword
enabled.

</prompt>
<prompt hotword="true"/> But this one will.
</prompt>

</field>
</form>

Usage

See Also

• VoiceXML 1.0 Specification:
<prompt>

• Related tags:
“<reprompt>” on page 160
“<audio>” on page 58

Parents Children

<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

<audio>
<enumerate>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13

VOICEXML REFERENCE 149

<prompt>

Examples

Example 1:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="tapered">
<block>
<prompt bargein="false">
This is question # 1.

</prompt>
</block>
<field name="color">
<noinput> <reprompt/> </noinput>
<nomatch> <reprompt/> </nomatch>
<grammar>[blue red green yellow]</grammar>
<prompt count="1">What is the color of the Sky?</prompt>
<prompt count="2">Choose a color.</prompt>
<prompt count="3">Choose from red blue green or yellow.</prompt>
<help>
The color of the sky is usually blue except
during sunset and sunrise.

</help>
<filled>
<if cond="color==’blue’">
<prompt>Thats correct. The sky is <value expr="color"/> </prompt>

<else/>
<prompt> thats not correct. The sky is blue in color. </prompt>

</if>
</filled>

</field>
</form>

</vxml>

150 VOICEXML REFERENCE

TAG REFERENCE

Example 2:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="hear_again">
<var name="r" expr="5"/>
<field name="more" type="boolean">
<prompt>The value of r is <value expr="r"/></prompt>
<prompt cond="r < 6">
Do you want me to play another music?

</prompt>
<prompt cond="r >= .50">
For another music say yes. To exit say no.

</prompt>
<filled>
<prompt>The value of r is <value expr="r"/></prompt>
<if cond="more">
<audio src="chimes.wav"/>

</if>
<clear/>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 151

<property>

<property>

Control implementation platform settings.

Syntax

<param
name="string"
value="string"/>

Description

Sets values that affect platform behavior and/or represent default attribute values.

The property settings apply to the parent element and all descendents. However,
property values set at lower levels take precedence.

The value of time-related properties must be an unsigned number, optionally
followed by "s" for seconds or "ms" for milliseconds. If there is no suffix, seconds
are assumed.

Usage

See Also

• VoiceXML 1.0 Specification:
<property>

Attribute Description

name Property name. The name can be any of the supported
properties described in Chapter 7, “Property Reference”.

value Property value. The allowable values depend on the property
specified in the name attribute.

Parents Children

<vxml>
<form>
<menu>
<field>
<initial>
<record>
<transfer>
<subdialog>
<object>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s17

152 VOICEXML REFERENCE

TAG REFERENCE

Examples

Example 1 - bargein property:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<property name="bargein" value="true"/>
<form id="form_property">
<property name="bargein" value="false"/>
<block>
<prompt>
This is a prompt where you can not barge in

</prompt>
<goto next="#form2"/>

</block>
</form>
<form id="form2">
<field name="option" type="boolean">
<prompt>
Try bargein in by saying one of yes or no as I speak because
this is a prompt where you can barge in.

</prompt>
<filled>
<if cond="option">
<disconnect/>

<else/>
<prompt> Continuing till this prompt </prompt>

</if>
</filled>

</field>
</form>

</vxml>

VOICEXML REFERENCE 153

<property>

Example 2 - timing properties:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form>
<!-- If you say nothing, it should pause for 10s then land here -->

<property name="timeout" value="10s"/>
<noinput>
<prompt>no input</prompt>
<reprompt/>

</noinput>

<!-- If you say "one" then stop, it should pause for 5s then land here -->

<property name="incompletetimeout" value="5s"/>
<nomatch>
<prompt>no match.</prompt>
<reprompt/>

</nomatch>

<!-- If you say "one two three four", it should land here immediately -->

<property name="completetimeout" value="0.1s"/>
<filled>
<prompt>Filled.</prompt>
<exit/>

</filled>

<field name="one">
Say one two three four
<grammar>(one two three four)</grammar>

</field>

<block>
Finished

</block>
</form>

</vxml>

Example 3 - maximum error properties:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!--this tests the maxerrors and maxdialogerrors properties. -->

154 VOICEXML REFERENCE

TAG REFERENCE

<property name="bevocal.maxerrors" value="9"/>
<property name="bevocal.maxdialogerrors" value="4" />
<property name="timeout" value="1.5s" />
<noinput> i did not hear anything </noinput>

<form id="firstform">
<catch event="error.bevocal.maxdialogerrors_exceeded">
<prompt>
max dialog errors event detected. going to next form.

</prompt>
<goto next="#secondform"/>

</catch>
<catch event="error.bevocal.maxerrors_exceeded">
<prompt>
total max errors event detected. this should not happen. exiting test.

</prompt>
<exit/>

</catch>
<field name="first" type="boolean">
please do not say anything. you should hear the no input message 3 times before
moving to the next field.

</field>
</form>

<!-- When you reach the second form, 4 errors have occurred. -->
<form id="secondform">
<property name="bevocal.maxdialogerrors" value="3" />
<catch event="error.bevocal.maxdialogerrors_exceeded">
<prompt>
max dialog errors event detected. going to next form.

</prompt>
<goto next="#thirdform"/>

</catch>
<catch event="error.bevocal.maxerrors_exceeded">
<prompt>
total max errors event detected. this should not happen. exiting test.

</prompt>
<exit/>

</catch>
<field name="first" type="boolean">
please do not say anything. you should hear the no input message 2 times before
moving to the next field.

</field>
</form>

<!-- When you reach the third form, 7 errors have occurred;
After two more errors, you will exceed the maximum for the call. -->

<form id="thirdform">
<catch event="error.bevocal.maxdialogerrors_exceeded">
<prompt>
max dialog errors event detected. this should not happen.

</prompt>
<exit/>

</catch>
<catch event="error.bevocal.maxerrors_exceeded">

VOICEXML REFERENCE 155

<property>

<prompt>
total max errors event detected. the test was successful. now exiting.

</prompt>
<exit/>

</catch>
<field name="first" type="boolean">
please do not say anything. you should hear the no input message 2 times before
you get a max total errors event.

</field>
</form>

</vxml>

156 VOICEXML REFERENCE

TAG REFERENCE

<pros>

Java Speech Markup Language (JSML) element to change the prosody of speech
output.

Syntax

<pros
rate="string"
vol="string"
pitch="string"
range="string">

Text
</pros>

Description

Controls how the enclosed text is spoken.

Currently all attributes are ignored and text is spoken normally.

Usage

See Also

• VoiceXML 1.0 Specification:
<pros>

• Related Elements:
“<break>” on page 65
“<div>” on page 80
“<emp>” on page 87
“<sayas>” on page 168

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

<audio>
<enumerate>
<value>
<break>
<div>
<emp>
<pros>
<sayas>
<say-as>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.2.4

VOICEXML REFERENCE 157

<record>

<record>

Record an audio sample.

Syntax

<record
name="string"
expr="js_expression"
cond="js_expression"
maxtime="time_interval"
finalsilence="time_interval"
type - not implemented
beep - not implemented
modal - not implemented
dtmfterm - not implemented >

Child Elements
</record>

Description

Field item that collects a recording from the user and stores the result in the field
item variable.

Attribute Description

name Field item variable used to store the recording. The variable
name may not be a JavaScript reserved keyword.

The field item variable has dialog (form) scope; its name must
be unique among all VoiceXML and JavaScript variables within
the form’s scope.

expr JavaScript expression that assigns the initial value of the field
item variable. Optional (default is "undefined").

If you set the field item variable to a value other than
"undefined", you’ll need to clear it before the <record>
can execute.

cond JavaScript boolean expression that also must evaluate to
"true" for the <record> to execute. Optional (default is
"true").

If not specified, the value of the field item variable alone
determines whether or not the <record> can execute.

maxtime Maximum duration of the recording. Optional (default is
"10s").

Express time interval as an unsigned number followed by "s"
for time in seconds; "ms" for time in milliseconds (the default).

finalsilence Duration of silence that will terminate the recording. Optional
(default is "1.5s").

Express time interval as unsigned number followed by "s" for
time in seconds; "ms" for time in milliseconds (the default).

type Not implemented (default is 8 KHz Wav).

beep Not implemented.

158 VOICEXML REFERENCE

TAG REFERENCE

Corresponding to the field item variable name is a “shadow variable” called name$.
After the recording is made, additional information is available in the following
properties of this shadow variable:

• duration - The duration of the recording in milliseconds.

• size - The size of the recording in bytes.

• termchar - Not implemented. If the dtmfterm attribute is "true", and the
user terminates the recording by pressing a DTMF key, then this property is the
key pressed (for example, "#"). Otherwise, the variable is null.

For a <record> element whose name is name, you access the property propName
of the shadow variable with the syntax:

name$.property

For example, you access the duration property for the <record> named
greeting as:

greeting$.duration

Usage

See Also

• VoiceXML 1.0 Specification:
<record>

modal Not implemented.

dtmfterm Not implemented.

Parents Children

<form> <audio>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<filled>
<grammar>
<prompt>
<property>

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.6

VOICEXML REFERENCE 159

<record>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form-record">
<record name="greeting" beep="true" maxtime="10s" finalsilence="2000ms">
<prompt>
Please record your greeting after the tone.

</prompt>
<noinput>
i did not hear anything. <reprompt/>

</noinput>
</record>
<field name="confirm" type="boolean">
<prompt>
your greeting is <value expr="greeting"/>
to keep it say yes, to discard it say no.

</prompt>
<filled>
<if cond="confirm">
<prompt> ok, i will save your greeting </prompt>
<submit method="post" namelist="greeting"
next="greetingstore.jsp"/>

<else/>
<prompt> ok, lets try again </prompt>
<clear namelist="greeting confirm"/>

</if>
</filled>

</field>
</form>

</vxml>

160 VOICEXML REFERENCE

TAG REFERENCE

<reprompt>

Play a field prompt when a field is re-visited after an event.

Syntax

<reprompt/>

Description

Normally the interpreter suppresses prompts when it selects the next form item after
executing a <catch>. By placing a <reprompt> in the <catch> you can cause
normal prompting to occur and prompt counters to increment when the next form
item is executed.

Usage

See Also

• VoiceXML 1.0 Specification:
<reprompt>

• Related tag:
“<prompt>” on page 147

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.6

VOICEXML REFERENCE 161

<reprompt>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<!--Do not give any input. The reprompt is played for the noinput-->

<form id="form-record">
<record name="message" beep="true" maxtime="10s"
finalsilence="2000ms" dtmfterm="true" type="audio/wav">
<prompt>
Please record your message after the tone and press any
key after you are done.

</prompt>
<noinput>
Error: i did not quite get your message. <reprompt/>

</noinput>
</record>
<block>
<prompt>
Your message is <value expr="message"/>

</prompt>
</block>

</form>
</vxml>

162 VOICEXML REFERENCE

TAG REFERENCE

<rethrow>

When executed within an event handlers, causes the event currently being handled
to be rethrown. The execution environment searches for a new handler for the event
starting in the scope above the one containing the current handler.

Syntax

<rethrow />

Description

Extension: Used within an event handler, causes the event currently being handled
to be thrown again, in the scope above that handler. Rethrowing an event allows you
to handle the same event at different levels. For example, an event handler in a form
could perform a certain amount of cleanup and then rethrow the event so that a
document-level event handler could perform further cleanup. For more information,
see Chapter 3, “Event Handling”.

Usage

See Also

• Related tags:
“<catch>” on page 67
“<error>” on page 90
“<help>” on page 120
“<noinput>” on page 136
“<nomatch>” on page 138
“<throw>” on page 183

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

VOICEXML REFERENCE 163

<rethrow>

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<catch event="myEvent">
<prompt>Catch of my event at document scope.</prompt>
<reprompt/>

</catch>
<form id="numbers">
<catch event="myEvent">
<prompt>Catch of my event at form scope.</prompt>
<rethrow/>

</catch>
<block name="numbergame"> This is a test for throw tag. </block>
<field name="mynumber" type="number">
<prompt>
Tell me a number greater than ten.

</prompt>
<filled>
<prompt>
The number you said is <value expr="mynumber"/>

</prompt>
<if cond="mynumber < 10">
<throw event="myEvent"/>

</if>
</filled>

</field>
</form>
</vxml>

164 VOICEXML REFERENCE

TAG REFERENCE

<return>

Return from a subdialog.

Syntax

<return
namelist="variable1 ...">
event="event"/>

Description

Causes subdialog’s execution context to terminate. You can use the <return> to
pass back variable values from the subdialog’s execution context and to propagate
an event back to the calling dialog (for example, a no-match event).

To propagate an event back to the calling dialog, use the event attribute. For
example:

<return event="notmatch"/>

It is also possible to return a value and propagate an event. For example:

<return namelist="a" event="notmatch"/>.

This will store the return value in the subdialog’s field item variable and then
propagate the event.

If <return> is encountered in a dialog that is not executing as a subdialog, an
error.semantic event is thrown.

The values returned with the namelist attribute are available to the calling dialog
as properties of the <subdialog> field item variable. They can be accessed using
the following notation:

subdialogName.namelistVarible

For example, if a subdialog is invoked with:

<subdialog name="sub" .../>

and exited with:

<return namelist="a"/>

then the return value can be accessed as:

"sub.a"

Attribute Description

namelist Space separated list of variables to return to the calling dialog.
Optional (default is to return no variables).

This attribute can specify both VoiceXML variables and JavaScript
variables, including variables that have not been explicitly declared.

event Return to calling dialog and throw this event.

VOICEXML REFERENCE 165

<return>

Usage

See Also

• VoiceXML 1.0 Specification:
<return>

• Related tag:
“<subdialog>” on page 177

Examples

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="main">
<subdialog name="result" src="#subbie">
<param name="goodbye" value="goodbye"/>

</subdialog>

<block>
We’re back from the sub dialog.
Result dot hello equals <value expr="result.hello"/>
Result dot goodbye equals <value expr="result.goodbye"/>

</block>
</form>
<form id="subbie"> <!-- This is the subdialog -->

<var name="hello" expr="’hello’"/> <!-- Already has a value,
so can’t be initialized by caller -->

<var name="goodbye"/> <!-- Is initialized by caller -->
<block>
This is the sub dialog.
<return namelist="hello goodbye"/>

</block>
</form>

</vxml>

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.10

166 VOICEXML REFERENCE

TAG REFERENCE

<say-as>

W3C Speech Synthesis Markup Language element to modify how the enclosed
word or phrase is spoken.

Syntax

<say-as
sub="string"
type="typeName"|"typeName:format" >

Text
</say-as>

Description

This tag is an extension to the BeVocal VoiceXML 1.0 platform. This tag replaces
the VoiceXML 1.0 tag <sayas>.

Usage

See Also

• Related tags:
“<break>” on page 65
“<div>” on page 80

Attribute Description

sub Substitute text to be spoken instead of enclosed text. Optional.

type Speak enclosed text in the given style. Optional.

Possible type names and formats are:
• Not implemented: acronym
• number - For number, such as 10.5 or 10
• number:digits - For sequence of digits, such as: 123456
• date - For dates, such as 20001210
• Not implemented: time
• Not implemented: duration
• currency - For currency in dollars and cents, such as $123.45
• Not implemented: measure
• telephone - For telephone number adhering to the North

American Dialing Plan, such as 408-907-3200
• Not implemented: name
• Not implemented: net
• address - For street, city, state, and zip code separated by

commas, such as 1380 bordeaux drive, sunnyvale,
california, 94089

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

None.

VOICEXML REFERENCE 167

<say-as>

“<emp>” on page 87
“<pros>” on page 156

168 VOICEXML REFERENCE

TAG REFERENCE

<sayas>

Java Speech Markup Language (JSML) element to modify how a word or phrase is
spoken.

Syntax

<sayas
sub="string"
class="phone"|"date"|"digits"|"literal"|

"currency"|"number"|"airport"|"airline"|
"equity"|"street"|"city"|"state"|
"citystate"|"address"

type="phone"|"date"|"digits"|"literal"|
"currency"|"number"|"airport"|"airline"|
"equity"|"street"|"city"|"state"|
"citystate"|"address"

phon - not implemented>
Text

</sayas>

Description

The <say-as> tag replaces the <sayas> tag. The <say-as> tag is from the
Synchronized Speech Markup Language.

Attribute Description

sub Substitute text to be spoken instead of enclosed text. Optional.

VOICEXML REFERENCE 169

<sayas>

Usage

See Also

• VoiceXML 1.0 Specification:
<sayas>

• Related tags:
“<break>” on page 65
“<div>” on page 80
“<emp>” on page 87
“<pros>” on page 156

class
type

Speak enclosed text in the given style. Optional.

Possible values with enclosed text formats are:
• phone - For telephone number adhering to the North American

Dialing Plan, such as 408-907-3200
• date - For dates, such as 20001210
• digits - For digits, such as: 123456
• literal - For literals
• currency - For currency in dollars and cents, such as $123.45
• number - For numbers, such as 10.5 or 10
• Not implemented: time

Extensions:
• airport - For airport codes, such as DFW
• airline - For airline codes, such as AA
• equity - For company symbol or full name, such as ibm or cisco
systems

• street - For street name (with or without street number), such as
bordeaux drive or 1380 bordeaux drive

• city - For city name, such as sunnyvale
• state - For state name, such as california
• citystate - For city name and state name separated by a

comma, such as sunnyvale, california
• address - For street, city, state, and zip code separated by

commas, such as 1380 bordeaux drive, sunnyvale,
california, 94089

Note: The class attribute is the VoiceXML 1.0 standard; the type
attribute is an extension. These two attributes are identical; only one
of them should be used.

phon Not implemented. Representation of the Unicode International
Phonetic Alphabet (IPA) characters to be spoken instead of enclosed
text. Optional.

Parents Children

<choice>
<prompt>
<enumerate>
<audio>
<div>
<emp>
<pros>

None.

Attribute Description

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.2.5

170 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form>
<block>
<prompt>
Here is a currency amount <sayas class="currency"> $123.45 </sayas>

Here is a company <sayas class="equity"> ibm </sayas>

Here is a company with a full name
<sayas class="equity"> cisco systems</sayas>

Here is a number <sayas class="number"> 10.05 </sayas>

Here is an integer number. You should not hear any decimal content
<sayas class="number"> 10 </sayas>

Here is an airport <sayas class="airport"> DFW </sayas>

Here is an airline <sayas class="airline"> AA </sayas>

Here is a phone number : <sayas class="phone"> 512-301-0691 </sayas>

Here is a date : <sayas class="date"> 20001210 </sayas>

Here is a street : <sayas class="street"> heiden lane </sayas>

Here is a city : <sayas class="city"> austin </sayas>

Here is a state: <sayas class="state"> texas </sayas>

Here is a citystate <sayas class="citystate"> austin, texas </sayas>

Here is an address
<sayas class="address"> 9008 heiden lane, austin, texas, 78749 </sayas>

Here is a digit string <sayas class="digits"> 123456 </sayas>
</prompt>

</block>
</form>

</vxml>

VOICEXML REFERENCE 171

<script>

<script>

Specify a block of JavaScript client-side scripting logic.

Syntax

<script
src="URL"
charset="string"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
maxage="time_interval"
maxstale="time_interval" >

Script Text
</script>

Description

Scripts do not have their own scope, but are executed in the scope of the containing
element.

Tips:

• Put CDATA escapes around your scripts, so you don’t have to follow all the XML
rules for <, >, &, etc. For example,

<script>
<![CDATA[
function factorial(n)
{
return (n <= 1) ? 1 : n * factorial(n-1);

}
]]>
</script>

• Remember that any variables or functions declared in a script are valid only
within the scope that contains the <script> element. Define the script in

Attribute Description

src URL of the script. Optional (as alternative to inline).

charset Character encoding of the script if src is used.

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

172 VOICEXML REFERENCE

TAG REFERENCE

document scope (in the <vxml> element) if it defines items that you want to use
in several dialogs or blocks.

Any items defined by a script inside a block are accessible only within that block.
In the following example, the first block contains a script that defines the function
foo. That function can be used in a JavaScript expression later in the same
block. However, it is illegal to use the function in a different block. The <value>
tag in the second block will fail because the function foo goes out of scope
when the interpreter leaves the first block.
<block>
<script>
<!{CDATA[
function foo() { return 1; }

]]>
</script>
<!-- This use of foo() is legal -->
Foo is <value expr="foo()"/>

</block>
<block>
<!-- ERROR!!!! This use of foo() is illegal -->
Foo is <value expr="foo()"/>

</block>

Usage

See Also

• VoiceXML 1.0 Specification:
<script>

• JavaScript Quick Reference

Parents Children

<vxml>
<form>
<menu>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.12
http://cafe.bevocal.com/docs/javascript_quick_reference/index.html

VOICEXML REFERENCE 173

<script>

Examples

Example 1 - script to get the current time:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form">
<block name="time"> <!-- This block uses a java script to tell you the time-->

<var name="hours"/>
<var name="minutes"/>
<var name="seconds"/>

<script>
var d=new Date();
hours=d.getHours();
minutes=d.getMinutes();
seconds=d.getSeconds();

</script>

<prompt>
Now the Time is <value expr="hours"/> hours
<value expr="minutes"/> minutes, and
<value expr="seconds"/> Seconds.

</prompt>
</block>

</form>
</vxml>

174 VOICEXML REFERENCE

TAG REFERENCE

Example 2 script defining a factorial function:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<script>
<![CDATA[
function factorial(n) { return (n <= 1) ? 1 : n * factorial(n-1); }

]]>
</script>
<var name="max" expr="10"/>
<form id="form-factorial">
<field name="fact" slot="num">
<prompt>
Tell me a number and I’ll tell you its factorial.

</prompt>
<prompt count="2">
Your number, please.

</prompt>
<prompt count="3">
Number?

</prompt>
<grammar src="number.grammar#MyTop"/>
<catch event="help">
<prompt>

Please say a number more then zero and less than <value expr="max"/>
</prompt>

</catch>
<filled>
<if cond="fact < max">
<prompt>
<value expr="fact" mode = "tts"/> factorial is
<value expr="factorial(fact)" mode="tts"/>

</prompt>
<else/>
<prompt>
Please choose a number less than <value expr="max"/>.

</prompt>
<clear namelist="fact" />

</if>
</filled>

</field>
</form>

</vxml>

VOICEXML REFERENCE 175

<send>

<send>

Experimental Extension. Submit values to a web server without transitioning to a
new VoiceXML document.

Syntax

<send
url="URL"
expr="js_expression"
method="get"|"post"
enctype=MIME_type
namelist="variable1 ..."
fetchtimeout="time_interval"
fetchaudio="URL"/>

Description

This tag submits the specified data to a web server; when the web server returns a
successful HTTP result code, execution of the current document continues with the
tag following the <send>. This tag is useful when you need to save data (for
example, the result of a <record>) in a database but do not need to transfer to a
new document.

The servlet or CGI script document to which <send> submits data must return a
valid HTTP reply, including headers and at least one blank line indicating the end of
the headers.

If the returned HTTP result code does not indicate success, an error.badfetch is
thrown to signal a server error to the VoiceXML application. That application can
catch the error and play an error message or take some other action to alert the
user.

Note: BeVocal is providing the current implementation to give our developers the
opportunity to use the tag and provide feedback, which we can pass on to the W3C.
If <send> is standardized, the BeVocal implementation will change as necessary to
match the VoiceXML standard. If such changes occur, we will attempt to maintain
backwards compatibility with the current implementation.

Attribute Description

url URL to which to submit the values. Optional (as alternative to
expr).

expr JavaScript expression that evaluates to the URL to which to
submit the values. Optional (as alternative to next).

method The query request method. Optional (default is "get").

enctype MIME encoding of the submitted document. Optional (default is
application/x-www-form-urlencoded).

The supported types are:
• application/x-www-form-urlencoded
• multipart/form-data

The type multipart/form-data is more efficient when
submitting large amounts of binary data.

176 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• Related tags:
“<submit>” on page 181

Example

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">

<form id="form-record">
<field name="name" type="boolean">
<prompt>
Say yes to send your data to Snoop Servlet or no to exit

</prompt>
<filled>
<if cond="name">
<send method="post" url="http://www.yoursite.com/SomeServlet"/>
<prompt>Data sent successfully!</prompt>

</if>
<prompt> Good bye! </prompt>
<exit/>

</filled>
</field>

</form>
</vxml>

namelist Space separated list of variables to submit. Optional (default is
to submit all field item variables that have been given explicit
names with the name attribute of <field>, <object>,
<record>, <transfer>, or <subdialog>).

This attribute can specify both VoiceXML variables and
JavaScript variables, including variables that have not been
explicitly declared.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

Attribute Description

VOICEXML REFERENCE 177

<subdialog>

<subdialog>

Invoke another dialog as a subdialog of the current one.

Syntax

<subdialog
name="string"
expr="js_expression"
cond="js_expression"
src="URL"
method="get"|"post"
enctype=MIME_type
namelist="variable1 ..."
modal="true"|"false"
caching="safe"|"fast"
fetchhint="prefetch"|"safe"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" >

Child Elements
</subdialog>

Description

Field item that invokes a subdialog, which is a reusable dialog that is specially coded
to pass back values with a <return> element. When control returns from the
subdialog, the returned values are available as properties of the <subdialog> field
item variable.

You pass values into the subdialog by including <param> child elements. The
subdialog must contain a <var> declaration for each parameter passed to it; if the
<var> contains an initializing expr attribute, that initializing value is ignored and the
value passed with the <param> element is used instead.

When a subdialog is invoked, it runs in a new execution context. This means that all
variables and state information in the subdialog’s document are reinitialized
(including the application root document, if one is used). Any changes that the
subdialog makes to application-scoped variables apply only in the subdialog context.
When the subdialog returns, its context is destroyed and the context of the calling
dialog is in the same state it was in before the subdialog call. The only way for the
subdialog to return information to its calling dialog is with a <return> element.

If the subdialog invokes other dialogs, those dialogs are also run in the new
execution context. The new context terminates and the old context resumes only
when the subdialog or another dialog it has invoked calls <return> to pass back
the results. After the subdialog returns, execution proceeds to any applicable
<filled> elements in the calling context.

178 VOICEXML REFERENCE

TAG REFERENCE

Attribute Description

name Field item variable used to store the results of the subdialog.

The field item variable has dialog (form) scope; its name must
be unique among all VoiceXML and JavaScript variables within
the form’s scope.

You can access the return values as properties of the field item
variable using the syntax:
name.returnVariableName

expr JavaScript expression that assigns the initial value of the field
item variable. Optional (default is "undefined").

If you set the field item variable to a value other than
"undefined", you’ll need to clear it before the
<subdialog> can execute.

cond JavaScript boolean expression that also must evaluate to
"true" for the <subdialog> to execute. Optional (default is
"true").

If not specified, the value of the field item variable alone
determines whether or not the <subdialog> can execute.

src URL of the subdialog.

You can use the "#DialogName" syntax to refer to another
dialog in the current document. Even in this case, the subdialog
is run in a new context.

Note that the method, enctype, namelist, caching,
fetchhint, fetchtimeout, and fetchaudio parameters
apply only if src points to a different document (as opposed to
starting with “#” to invoke a subdialog in the current document).

method The query request method, either "get" or "post". Optional
(default is "get").

enctype MIME encoding of the submitted document. Optional (default is
application/x-www-form-urlencoded).

The supported types are:
• application/x-www-form-urlencode
• multipart/form-data

The type multipart/form-data is more efficient when
submitting large amounts of binary data.

namelist Space separated list of variables to submit. Optional (default is
to submit nothing).

This attribute can specify both VoiceXML variables and
JavaScript variables, including variables that have not been
explicitly declared.

VOICEXML REFERENCE 179

<subdialog>

By default, no grammars from the calling dialog’s context are active, except any
default grammars defined by the VoiceXML interpreter. However, if the modal
attribute is "false", <link> elements in the calling dialog’s context are active.
When a grammar from the calling context is triggered during execution of a
subdialog, the subdialog context terminates and control returns to the calling
context.

If an event is thrown during execution of a subdialog and no event handler for the
event is found in the subdialog context, the interpreter’s response depends on
whether the subdialog is modal.

• If the subdialog is modal, a fatal error occurs, causing the interpreter to exit.

• If the subdialog is non-modal, the interpreter causes the subdialog’s context to
return. It then rethrows the event in the calling context and starts its search for
the event handler in that context.

Usage

modal Boolean value that must be "false" to enable <link>
grammars from the calling context. Optional (default is
"true").

Lets you alter default behavior so that <link> grammars from
the calling context can be active while the subdialog executes.

Note: in the next version of the VoiceXMLstandard, the modal
attribute will be removed and all subdialogs will be modal. To
ensure portability, your applications should avoid using this
attribute.

caching See Chapter 4, “Fetching Resources”. Optional.

fetchhint See Chapter 4, “Fetching Resources”. Optional.

Note: If this element sends variables to the server with the
namelist attribute, a "prefetch" value for the fetchhint
attribute is ignored.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

Parents Children

<form> <audio>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<filled>
<param>
<prompt>
<property>

Attribute Description

180 VOICEXML REFERENCE

TAG REFERENCE

See Also

• VoiceXML 1.0 Specification:
<subdialog>

• Related tags:
“<param>” on page 145
“<return>” on page 164
“<object>” on page 140

Examples

<?xml version="1.0"?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="main">
<block>We’re about to call the sub dialog</block>
<subdialog name="result" src="#subbie">
<param name="hello" value="goodbye"/>
<param name="goodbye" value="goodbye"/>

</subdialog>
<block>
We’re back from the sub dialog.
Result dot hello equals <value expr="result.hello"/>
Result dot goodbye equals <value expr="result.goodbye"/>

</block>
</form>

<form id="subbie"> <!-- This is the subdialog -->
<!-- Variables are given values by parameters to the subdialog -->
<var name="hello" expr="’hello’"/> <!-- Initial value will be ignored -->
<var name="goodbye"/>
<block>
This is the sub dialog.
<return namelist="hello goodbye"/>

</block>
</form>

</vxml>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.4

VOICEXML REFERENCE 181

<submit>

<submit>

Submit values to a document server.

Syntax

<submit
next="URL"
expr="js_expression"
method="get"|"post"
enctype=MIME_type
namelist="variable1 ..."
caching="safe"|"fast"
fetchtimeout="time_interval"
fetchaudio="URL"
maxage="time_interval"
maxstale="time_interval" />

Description

Attribute Description

next URL to which to submit the values. Optional (as alternative to
expr).

expr JavaScript expression that evaluates to the URL to which to
submit the values. Optional (as alternative to next).

method The query request method. Optional (default is "get").

enctype MIME encoding of the submitted document. Optional (default is
application/x-www-form-urlencoded).

The supported types are:
application/x-www-form-urlencoded
multipart/form-data

The type multipart/form-data is more efficient when
submitting large amounts of binary data.

namelist Space separated list of variables to submit. Optional (default is
to submit all field item variables that have been given explicit
names with the name attribute of <field>, <object>,
<record>, <transfer>, or <subdialog>).

This attribute can specify both VoiceXML variables and
JavaScript variables, including variables that have not been
explicitly declared.

caching See Chapter 4, “Fetching Resources”. Optional.

fetchtimeout See Chapter 4, “Fetching Resources”. Optional.

fetchaudio See Chapter 4, “Fetching Resources”. Optional.

maxage Extension. See Chapter 4, “Fetching Resources”. Optional.

maxstale Extension. See Chapter 4, “Fetching Resources”. Optional.

182 VOICEXML REFERENCE

TAG REFERENCE

Usage

See Also

• VoiceXML 1.0 Specification:
<submit>

• Related tags:
“<goto>” on page 112
“<send>” on page 175

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="form-record">
<field name="name" type="boolean">
<prompt>
Say yes or no to submit a request to Snoop Servlet

</prompt>
<filled>
<if cond="name">
<submit caching="safe" method="post"
next="http://www.yoursite.com:8080/docroot/SomeServlet"/>

<else/>
<prompt> Good bye! </prompt>
<exit/>

</if>
</filled>

</field>
</form>

</vxml>

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.8

VOICEXML REFERENCE 183

<throw>

<throw>

Throw an event.

Syntax

<throw
event="event"
eventexpr="js_expression"
message="string"
messageexpr="js_expression" />

Description

You can throw either a predefined event or an application-specific event. For more
information, see Chapter 3, “Event Handling”.

One and only one of the attributes event or eventexpr must be specified. At most
one of the attributes message or messageexpr may be specified.

Within an event handler that catches the thrown event, the variable

Usage

See Also

• VoiceXML 1.0 Specification:
<throw>

• Related tags:
“<catch>” on page 67
“<error>” on page 90
“<help>” on page 120
“<noinput>” on page 136
“<nomatch>” on page 138
“<rethrow>” on page 162

Attribute Description

event Event to throw. Optional (as alternative to eventexpr).

eventexpr JavaScript expression that evaluates to the event to throw.
Optional (as alternative to event).

message Message string providing additional context about the event
being thrown. Optional.

eventexpr JavaScript expression that evaluates to the message string.
Optional.

Parents Children

<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s11.1

184 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<catch event="myEvent">
<prompt>
Catch at document scope in myEvent.
<value expr="_message">

</prompt>
<reprompt/>

</catch>

<catch event="nomatch noinput" >
<prompt>
Catch at document scope

</prompt>
<reprompt/>

</catch>

<help>
<prompt>
Catch for help at document scope

</prompt>
<reprompt/>

</help>

<form id="numbers">
<block name="numbergame"> This is a test for throw tag. </block>
<field name="mynumber" type="number">
<prompt>
Tell me a number greater than ten.

</prompt>
<filled>
<if cond="mynumber < 10">
<throw
event="myEvent"
messageexpr="mynumber + ’ is less than ten’"/>

<elseif cond="mynumber > 10" />
<prompt>
The number you said is <value expr="mynumber"/>

</prompt>
<else/>
<throw event="myEvent" message="The number was ten"/>

</if>
</filled>

</field>
</form>

</vxml>

VOICEXML REFERENCE 185

<transfer>

<transfer>

Transfer the caller to another destination.

Syntax

<transfer
name="string"
expr="js_expression"
cond="js_expression"
dest="URL"
destexpr="js_expression"
connecttimeout="time_interval"
maxtime="time_interval"
bridge - not implemented >

Child Elements
</transfer>

Description

Field item for transferring the caller to another phone number. The transfer may be
done so that the current session with the interpreter resumes after the call with the
third party completes (bridging) or so that the current session terminates when the
transfer is made (blind transfer).

Attribute Description

name Field item variable used to store the result of the transfer.
The variable name may not be a JavaScript reserved
keyword.

The field item variable has dialog (form) scope; its name
must be unique among all VoiceXML and JavaScript
variables within the form’s scope.

Possible values are:
• busy - The call was refused by the endpoint.
• noanswer - There was no answer within the duration

specified by connecttimeout.
• network_busy - The call was refused by an

intermediate network.
• near_end_disconnect - The call completed because

the caller hung up.
• far_end_disconnect - The call completed because

the callee hung up.
• network_disconnect - The call completed and was

terminated by the network.

expr JavaScript expression that assigns the initial value of the
field item variable. Optional (default is "undefined").

If you set the field item variable to a value other than
"undefined", you’ll need to clear it before the
<transfer> can execute.

186 VOICEXML REFERENCE

TAG REFERENCE

Corresponding to the field item variable name is a “shadow variable” whose name is
name$. After the transfer is complete, the duration of the call in seconds is stored in
the floating-point duration property of this shadow variable. For a <transfer>
element whose name is name, you access the duration with the syntax:

name$.duration

The following events may be thrown during the execution of a <transfer>
element:

• telephone.disconnect.hangup - The caller hung up.

• telephone.disconnect.transfer - The caller was transferred
unconditionally to another line and will not return.

cond JavaScript boolean expression that also must evaluate to
"true" for the <transfer> to execute. Optional (default
is "true").

If not specified, the value of the field item variable alone
determines whether or not the <transfer> can execute.

dest URL of the destination (for example, phone, IP telephony
address). Optional (as alternative to destexpr).

You can specify the URL using any of the following formats:
• phone://8005551212
• 800-555-1212
• phone://800-555-1212

A leading “1” on the phone number is optional and will be
ignored.

destexpr JavaScript expression that evaluates to the URL of the
destination. Optional (as alternative to dest).

connecttimeout Time to wait before returning a value of "noanswer".

Express time interval as an unsigned number followed by
"s" for time in seconds; "ms" for time in milliseconds (the
default).

maxtime How long the call is allowed to last. Optional (default is
"0", signifying no limit).

This only pertains to bridged calls. Express time interval as
an unsigned number followed by "s" for time in seconds;
"ms" for time in milliseconds (the default).

bridge Not implemented (currently always "true").

Determines whether the current session will resume after
the transferred call completed. Optional (default is
"true").

If you set this to "false", the current session terminates
by throwing a telephone.disconnect.transfer
event when the transfer is made.

Attribute Description

VOICEXML REFERENCE 187

<transfer>

Usage

See Also

• VoiceXML 1.0 Specification:
<transfer>

• Related tag:
“<disconnect>” on page 78

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block>
<prompt>
Welcome to Be Vocal Cafe! Now taking you to
BeVocal Consumer Services.

</prompt>
<var name="transname"/>
<assign name="transname" expr="’phone://18004286225’"/>

</block>
<transfer name="services" bridge="true"
connecttimeout="300" dest="phone://18004286225" />

</form>
</vxml>

Parents Children

<form> <audio>
<value>
<catch>
<help>
<noinput>
<nomatch>
<error>
<dtmf>
<filled>
<grammar>
<prompt>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s14.7

188 VOICEXML REFERENCE

TAG REFERENCE

<value>

Insert the value of a expression in a prompt.

Syntax

<value
class="phone"|"date"|"digits"|"literal"|

"currency"|"number"|"airport"|"airline"|
"equity"|"street"|"city"|"state"|
"citystate"|"address"

type="phone"|"date"|"digits"|"literal"|
"currency"|"number"|"airport"|"airline"|
"equity"|"street"|"city"|"state"|
"citystate"|"address"

expr="js_expression"
mode - not implemented
recsrc - not implemented />

Description

Attribute Description

class
type

The <sayas> type of the variable for interpretive purposes.
Optional.

See the <sayas> tag.

Note: The class attribute is the VoiceXML 1.0 standard; the
type attribute is an extension. These two attributes are
identical; only one of them should be used.

expr JavaScript expression to evaluate and insert in the prompt.

mode Not implemented.

recsrc Not implemented.

VOICEXML REFERENCE 189

<value>

Usage

See Also

• VoiceXML 1.0 Specification:
<value>

• Related tags:
“<assign>” on page 56
“<var>” on page 193
“<field>” on page 95
“<record>” on page 157
“<object>” on page 140
“<subdialog>” on page 177
“<transfer>” on page 185
“<block>” on page 63
“<initial>” on page 124

Parents Children

<menu>
<choice>
<prompt>
<enumerate>
<field>
<initial>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<audio>
<div>
<emp>
<pros>
<record>
<transfer>
<if>
<filled>
<subdialog>
<object>
<log>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s13.4

190 VOICEXML REFERENCE

TAG REFERENCE

Examples

Example 1 - with field item variable:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form>
<field name="state">
<prompt>
Do you want texas or california?

</prompt>
<grammar> [texas california] </grammar>

</field>
<block>
<prompt>
Your answer was <value expr="state" class="state"/>

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 191

<value>

Example 2 - using assignment:

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="myCalculator">
<var name="result"/>
<field name="op"> <!-- OPERATION -->
<prompt>
BeVocal calculator.
Choose add, subtract, multiply, or divide.

</prompt>
<grammar>
[add subtract multiply divide]

</grammar>
<help>Say add, subtract, multiply, or divide.</help>
<filled>
<prompt>Okay, let’s <value expr="op"/> two numbers.</prompt>

</filled>
</field>

<field name="a" type="number"> <!-- FIRST OPERAND -->
<prompt>Whats the first number?</prompt>
<help>
Please say a number. This number will be used as the first operand.

</help>
<filled>
<prompt><value expr="a"/></prompt>

</filled>
</field>

<field name="b" type="number"> <!-- SECOND OPERAND -->
<prompt>and the second number?</prompt>
<help>
Please say a number. This number will be used as the second operand.

</help>
<filled>
<prompt><value expr="b"/> Okay.</prompt>

<!-- NOW SAY THE RESULT -->

<if cond="op==’add’">
<!-- NOTE: Use Number() here in order to avoid

interpreting + as string concatenation! -->
<assign name="result" expr="Number(a) + Number(b)"/>
<prompt>
<value expr="a"/> plus <value expr="b"/> equals
<value expr="result"/>

</prompt>
<elseif cond="op==’subtract’"/>
<assign name="result" expr="a - b"/>
<prompt>
<value expr="a"/> minus <value expr="b"/> equals

192 VOICEXML REFERENCE

TAG REFERENCE

<value expr="result"/>
</prompt>

<elseif cond="op==’multiply’"/>
<assign name="result" expr="a * b"/>
<prompt>
<value expr="a"/> times <value expr="b"/> equals
<value expr="result"/>

</prompt>
<elseif cond="op==’divide’"/>
<assign name="result" expr="a / b"/>
<prompt>
<value expr="a"/> divided by <value expr="b"/> equals
<value expr="result"/>

</prompt>
</if>
<clear/>

</filled>
</field>

</form>
</vxml>

VOICEXML REFERENCE 193

<var>

<var>

Declare a variable.

Syntax

<var
name="string"
expr="js_expression"/>

Description

Declaration of a variable in the scope of the enclosing element. If this variable is
already declared in the current scope, further declarations are treated as value
assignments.

Although variables do not need to be declared, explicit <var> declarations improve
the readability and maintainability of an application, and aid application flow
analysis.

If a <var> element names a variable that is already in scope, it does not declare a
new variable with the same name, but simply assigns a value to the existing variable.
If the <var> element has an expr attribute, the variable is assigned the specified
value; otherwise, the variable is assigned the value "undefined".

Usage

See Also

• VoiceXML 1.0 Specification:
<var>

• Related tags:
“<assign>” on page 56
“<value>” on page 188

Attribute Description

name Variable name, which must be a valid JavaScript identifier and
may not be a reserved keyword in either JavaScript or Java.

expr JavaScript expression that assigns the initial value of the
variable. Optional (default is either "undefined" or the
current value of the variable, if already declared in this scope).

Parents Children

<form>
<vxml>
<block>
<catch>
<error>
<help>
<noinput>
<nomatch>
<if>
<filled>

None.

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s19.1

194 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<var name="a"/>
<var name="b"/>
<var name="result"/>
<block>
<assign name="a" expr="10"/>
<assign name="b" expr="35"/>
<assign name="result" expr="a * b"/>

</block>
<block>
<prompt>
<value expr="a"/> multiplied by <value expr="b"/> equals
<value expr="result"/>

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 195

<vxml>

<vxml>

Contain VoiceXML code.

Syntax

<vxml
application="URL"
base="URL"
lang="language"
version="version_number">

Child Elements
</vxml>

Description

Top-level element in each VoiceXML document.

Usage

See Also

• VoiceXML 1.0 Specification:
<vxml>

Attribute Description

application URL of this application’s root document. Optional (default is not
to have an application root document).

If the specified document also has an application attribute,
an error.semantic event is thrown.

base Base URL. Optional.

lang Language and locale for this document. Optional.

version VoiceXML version used in this document. Optional (default is
"1.0").

Parents Children

None. <catch>
<help>
<noinput>
<nomatch>
<error>
<form>
<link>
<menu>
<meta>
<property>
<script>
<var>

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#s5

196 VOICEXML REFERENCE

TAG REFERENCE

Examples

<?xml version="1.0" ?>

<!DOCTYPE vxml PUBLIC "-//BeVocal Inc//VoiceXML 1.0//EN"
"http://cafe.bevocal.com/libraries/dtd/vxml1-0-bevocal.dtd">

<vxml version="1.0">
<form id="foo">
<block>
<prompt>
Hello Developers! You are the VXML Gurus.
Please keep using our services.

</prompt>
</block>

</form>
</vxml>

VOICEXML REFERENCE 197

7 Property Reference

This chapter describes the VoiceXML properties that can be set with the
<property> tag.

Each property description explains what the property does, what possible values the
property may have, and what default value is used if the application does not set the
property.

In the cases where the BeVocal interpreter deviates from the VoiceXML 1.0
Specification, the difference is clearly marked below in the following ways:

• Not Implemented - Functionality not currently available.

• Extension - Added functionality.

• Deprecated - Non-standard or superseded feature that was supported by an
earlier version but has been replaced by a new feature.

The property descriptions are organized according to the facet of the interpreter that
the properties control. The following table list the properties in alphabetical order.

Property Controls

audiofetchhint Fetching

audiomaxage Extension Fetching

audiomaxstale Extension Fetching

bargein Prompts

bevocal.maxdialogerrors Extension Speech errors

bevocal.maxerrors Extension Speech errors

bevocal.goback Extension Go-back facility

bevocal.mingoback Extension Go-back facility

caching Fetching

completetimeout Speech recognition

confidencelevel Speech recognition

datafetchhint Extension Fetching

datamaxage Extension Fetching

datamaxstale Extension Fetching

documentfetchhint Fetching

documentmaxage Extension Fetching

documentmaxstale Extension Fetching

fetchaudio Background Audio

fetchaudiodelay Extension Background audio

fetchaudiominimum Extension Background audio

fetchtimeout Fetching

198 VOICEXML REFERENCE

PROPERTY REFERENCE

Prompts

The following properties control the behavior of prompts:

• bargein
• hotword
• timeout

bargein

The bargein property indicates whether the user can “barge in” during prompts.
Set this property to "true" to allow barge-in; set it to "false" to disallow barge-in.

The default value is "true".

hotword

Extension. The hotword property indicates whether speech can interrupt the
prompt even if it does not match a grammar. This property is relevant only when
bargein is "true".

Set this property to "true" so that input that doesn’t match the grammar is ignored
and only speech that matches a grammar can interrupt the prompt. Set it to
"false" to allow any user utterance to interrupt the prompt.

The default value is "false".

grammarfetchhint Fetching

grammarmaxage Extension Fetching

grammarmaxstale Extension Fetching

hotword Extension Prompts

incompletetimeout Speech recognition

inputmodes Input modes

interdigittimeout DTMF recognition

objectfetchhint Fetching

objectmaxage Extension Fetching

objectmaxstale Extension Fetching

scriptfetchhint Fetching

scriptmaxage Extension Fetching

scriptmaxstale Extension Fetching

sensitivity Speech recognition

speedvsaccuracy Speech recognition

termchar DTMF recognition

termtimeout Not Implemented DTMF recognition

timeout Prompts

universals Extension Universal grammars

Property Controls

VOICEXML REFERENCE 199

Input Modes

timeout

The value of the timeout property is the time after which a no-input event is thrown
by the interpreter.

The default value is 5 seconds.

See Appendix F of the VoiceXML 1.0 specification for a thorough description of the
way this property interacts with the completetimeout, and
incompletetimeout properties.

Input Modes

The inputmodes property controls allowable user input modes.

inputmodes

The inputmodes property specifies which input modes to enable: DTMF and/or
voice.

The defaults value is "dtmf voice". To disable speech recognition, set
inputmodes to "dtmf". To disable DTMF, set it to "voice".

You can use this property:

• To turn off speech recognition in noisy environments.

• To conserve speech recognition resources by turning them off where the all
input is expected to be DTMF.

Speech Recognition

The following properties control behavior of the speech-recognition engine:

• completetimeout
• confidencelevel
• incompletetimeout
• sensitivity
• speedvsaccuracy

See Appendix F of the VoiceXML 1.0 specification for a thorough description of the
way the timeout property interacts with the completetimeout and
incompletetimeout properties.

completetimeout

The value of the completetimeout property is the amount of time to wait for
additional input after the engine has recognized speech matching one of the input
grammars.

The default value is 0.5 seconds

http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#f
http://www.w3.org/TR/2000/NOTE-voicexml-20000505/#f

200 VOICEXML REFERENCE

PROPERTY REFERENCE

confidencelevel

The value of the confidencelevel property is the confidence threshold required
for the speech-recognition engine to decide whether the input speech matches a
grammar.

The default value of 0.5 maps to 35% confidence in our Nuance speech-recognition
engine. Setting this property higher will result in fewer false recognitions at the cost
of many more no-match events. Setting it lower will reduce the number of no-match
events at the risk of more false recognitions.

In practice, most applications use a confidencelevel very near the default value
of 0.5. The minimum is 0.0 and the maximum is 1.0.

incompletetimeout

The value of the incompletetimeout property is amount of time to wait for
additional speech input when the user has begun speaking but the input does not
yet match a complete grammar.

The default is 1.5 seconds.

sensitivity

The value of the sensitivity property is the sensitivity of the speech recognition.
In effect, this is the “gain” or “input volume” used for the speech input. Higher values
will allow the speech-recognition engine to recognize softer speech but will also pick
up more background noise. You may need to tune this property downward if you
expect your application to be used in noisy environments, or upward if you expect it
to be used in very quiet environments.

The default value is 0.5. The minimum is 0.0 and the maximum is 1.0.

speedvsaccuracy

The speedvsaccuracy property controls the trade-off between speed and
accuracy in the speech-recognition engine. Lower values cause potential results
with a low probability to be pruned early in the search process, resulting in faster
recognition speed. Higher values retain potential results longer, resulting in slower
but more accurate recognitions.

The default value of 0.5 maps to a fairly accurate setting (1200 on a scale of 0 to
1400 in our Nuance recognition engine). The minimum is 0.0 and the maximum is
1.0.

If you have extremely large grammars that are causing speech recognition to take
too long, you might experiment with lower values for this property. Otherwise, you
probably will not need to adjust this property.

VOICEXML REFERENCE 201

DTMF Recognition

DTMF Recognition

The following properties control DTMF recognition:

• interdigittimeout
• termchar
• termtimeout

interdigittimeout

The value of the interdigittimeout property is the amount of time that the
recognition engine waits for another DTMF digit before it decides that the user has
finished entering digits and returns a recognition or a no-match event.

The default is 3 seconds.

Note: Currently, this property also controls the amount of time the engine waits for a
termination character (if termchar is set) after the last DTMF digit in a grammar is
entered. When you have a fixed-length input field with a DTMF grammar, you may
wish to set this property to 0 seconds to avoid a pause after the last digit is entered.

termchar

The value of the termchar property is the terminating character for DTMF
recognition. If this property is set, the engine will wait interdigittimeout seconds for a
the termination character before returning recognized DTMF input.

Note: The BeVocal VoiceXML interpreter currently has a bug that causes the
terminating character to be returned as part of the result, even though the VoiceXML
specification says that it should not be.

termtimeout

Not implemented. Currently, the interdigittimeout property is used in place of
termtimeout.

Background Audio

The following properties control background audio:

• fetchaudio
• fetchaudiodelay
• fetchaudiominimum

fetchaudio

The value of the fetchaudio property is the URL of the audio clip to play while
waiting for a VoiceXML document or object file to be fetched.

The default is not to play any audio.

Note: This property is relevant only when the interpreter fetches VoiceXML
documents and object files. Background audio is never played while the interpreter
fetches grammar, audio, or script files.

202 VOICEXML REFERENCE

PROPERTY REFERENCE

fetchaudiodelay

Extension. The value of the fetchaudiodelay property is the amount of time to
wait after a VoiceXML download is started before its fetchaudio source is played
in the background. This property is useful if you want a short period of silence before
the audio starts playing. If the download completes during the period of silence, the
audio will not be played at all.

The default value is 0 seconds.

fetchaudiominimum

Extension. The value of the fetchaudiominimum property is the minimum time
interval to play the fetchaudio source, once started, even if the fetch result arrives
in the mean time.

The default value is 0 seconds.

Fetching

The following properties control resource and document fetching:

• audiofetchhint
• audiomaxage
• audiomaxstale
• caching
• datafetchhint
• datamaxage
• datamaxstale
• documentfetchhint
• documentmaxage
• documentmaxstale
• fetchtimeout
• grammarfetchhint
• grammarmaxage
• grammarmaxstale
• objectfetchhint
• objectmaxage
• objectmaxstale
• scriptfetchhint
• scriptmaxage
• scriptmaxstale

The following additional properties are deprecated;

• audioexpirationtime
• documentexpirationtime
• grammarexpirationtime
• objectexpirationtime
• scriptexpirationtime

For more information about how resources are fetched, see Chapter 4, “Fetching
Resources”.

VOICEXML REFERENCE 203

Fetching

audiofetchhint

The audiofetchhint property tells the interpreter whether it can attempt to
optimize dialog interpretation by prefetching or streaming audio files. The value is
one of:

• "safe" - Fetch audio files only when they are needed, never before.
• "prefetch" - Permit, but do not require, the interpreter to prefetch audio files.
• "stream" - Allow the interpreter to stream the fetched audio files.

Note: The ability to stream audio files in a beta feature.

The default value is "prefetch".

audiomaxage

Extension. The audiomaxage property specifies the maximum acceptable age, in
seconds, of cached audio resources. The value is a time interval expressed as an
unsigned number followed by "s" for time in seconds (the default); "ms" for time in
milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached audio files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached audio files are used.

By default, no value is set for this property.

audiomaxstale

Extension. The audiomaxstale property specifies the maximum acceptable time,
in seconds, during which expired cached audio resources can still be used. The
value is a time interval expressed as an unsigned number followed by "s" for time in
seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 300 seconds (5 minutes). This default results in much faster
performance for most applications, since it greatly reduces the number of times the
interpreter must send “get if modified” requests to the HTTP server. If you want the
behavior defined in the VoiceXML specification (always do a “get if modified” if there
was no Expires header), set audiomaxstale to 0.

204 VOICEXML REFERENCE

PROPERTY REFERENCE

caching

In a VoiceXML 1.0 application, the caching property controls the use of unexpired
cache files when the relevant maximum-age property is not set. The caching
property can be set to either "safe" to ignore any cached file when fetching, or
"fast" to use any cached file instead of fetching.

The default value is "fast".

Note: The caching property is ignored when the vxml tag’s version attribute
equals 2.0, and the application will use an unexpired cached copy of a file if the
relevant maximum-age property is not set.

datafetchhint

Extension. The datafetchhint property tells the interpreter whether XML data
may be prefetched. The value is one of:

• "safe" - Fetch data files only when they are needed, never before.
• "prefetch" - Permit, but do not require, the interpreter to prefetch data files.

The default value is "safe".

datamaxage

Extension. The datamaxage property specifies the maximum acceptable age, in
seconds, of cached XML data files. The value is a time interval expressed as an
unsigned number followed by "s" for time in seconds (the default); "ms" for time in
milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached data files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached audio files are used.

By default, no value is set for this property.

datamaxstale

Extension. The datamaxstale property specifies the maximum acceptable time, in
seconds, during which expired cached XML data files can still be used. The value is
a time interval expressed as an unsigned number followed by "s" for time in
seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 0 seconds.

VOICEXML REFERENCE 205

Fetching

documentfetchhint

The documentfetchhint property tells the interpreter whether VoiceXML
documents may be prefetched. The value is one of:

• "safe" - Fetch document files only when they are needed, never before.
• "prefetch" - Permit, but do not require, the interpreter to prefetch document

files.

The default value is "safe".

documentmaxage

Extension. The documentmaxage property specifies the maximum acceptable age,
in seconds, of cached VoiceXML document files. The value is a time interval
expressed as an unsigned number followed by "s" for time in seconds (the default);
"ms" for time in milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached VoiceXML document files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached document files are used.

By default, no value is set for this property.

documentmaxstale

Extension. The documentmaxstale property specifies the maximum acceptable
time, in seconds, during which expired cached VoiceXML document files can still be
used. The value is a time interval expressed as an unsigned number followed by "s"
for time in seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 0 seconds.

fetchtimeout

The value of the fetchtimeout property is the time-out period for fetches. The
interpreter will wait this long for the resource to be returned before throwing an
error.badfetch event. The value is a time interval expressed as an unsigned
number followed by "s" for time in seconds; "ms" for time in milliseconds (the
default).

The default value is 1 minute.

If you set this property to 0, the interpreter waits indefinitely.

grammarfetchhint

The grammarfetchhint property tells the interpreter whether grammars may be
prefetched. The value is one of:

• "safe" - Fetch grammar files only when they are needed, never before.

206 VOICEXML REFERENCE

PROPERTY REFERENCE

• "prefetch" - Permit, but do not require, the interpreter to prefetch grammar
files.

The default value is "prefetch".

grammarmaxage

Extension. The grammarmaxage property specifies the maximum acceptable age,
in seconds, of cached grammar resources. The value is a time interval expressed as
an unsigned number followed by "s" for time in seconds (the default); "ms" for time
in milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached grammar files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached grammar files are used.

By default, no value is set for this property.

grammarmaxstale

Extension. The grammarmaxstale property specifies the maximum acceptable
time, in seconds, during which expired cached grammar resources can still be used.
The value is a time interval expressed as an unsigned number followed by "s" for
time in seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 0 seconds.

objectfetchhint

The objectfetchhint property tells the interpreter whether the URL contents for
an <object> may be prefetched. The value is one of:

• "safe" - Fetch object files only when they are needed, never before.
• "prefetch" - Permit, but do not require, the interpreter to prefetch object files.

The default value is "prefetch".

VOICEXML REFERENCE 207

Fetching

objectmaxage

Extension. The objectmaxage property specifies the maximum acceptable age, in
seconds, of cached object resources. The value is a time interval expressed as an
unsigned number followed by "s" for time in seconds (the default); "ms" for time in
milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached object files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached object files are used.

By default, no value is set for this property.

objectmaxstale

Extension. The objectmaxstale property specifies the maximum acceptable time,
in seconds, during which expired cached object resources can still be used. The
value is a time interval expressed as an unsigned number followed by "s" for time in
seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 0 seconds.

scriptfetchhint

The scriptfetchhint property tells the interpreter whether scripts may be
prefetched or not. The value is one of:.

• "safe" - Fetch script files only when they are needed, never before
• "prefetch" - Permit, but do not require, the interpreter to prefetch script files.

The default value is "prefetch".

208 VOICEXML REFERENCE

PROPERTY REFERENCE

scriptmaxage

Extension. The scriptmaxage property specifies the maximum acceptable age, in
seconds, of cached script resources. The value is a time interval expressed as an
unsigned number followed by "s" for time in seconds (the default); "ms" for time in
milliseconds.

An unexpired cached file that does not exceed the maximum age will be used; a
cached file that exceeds the maximum will be fetched again.

When no value is set for this property:

• A VoiceXML 1.0 application uses the caching property to controls whether
unexpired cached script files are used.

• When the vxml tag’s version attribute equals 2.0, the caching property is
ignored and unexpired cached script files are used.

By default, no value is set for this property.

scriptmaxstale

Extension. The scriptmaxstale property specifies the maximum acceptable time,
in seconds, during which expired cached script resources can still be used. The
value is a time interval expressed as an unsigned number followed by "s" for time in
seconds (the default); "ms" for time in milliseconds.

A cached file that has been expired for more that the maximum stale time will be
refetched; one that has been stale for less than or equal to the maximum stale time
will be used.

The default is 0 seconds.

File Expiration Time

Deprecated. An earlier version of BeVocal VoiceXML used the following properties
to control expiration time for audio files of various kinds:

• audioexpirationtime - audio files
• documentexpirationtime - document files
• grammarexpirationtime - grammar files
• objectexpirationtime - object files
• scriptexpirationtime - script files

These properties have been deprecated. You should now use the typemaxstale
property in stead of the typeexpirationtime property; for example, use
documentmaxstale instead of documentexpirationtime.

For backward compatibility, if the interpreter encounters an expiration-time property,
it will map the specified value to a setting for the corresponding maximum-stale-time
property and emit a warning message.

Universal Grammars

Extension. The universals property controls the use of universal grammars. See
“Universal Grammars” on page 20.

VOICEXML REFERENCE 209

Speech Errors

universals

Extension. The universals property specifies which universal grammars should
be active; it deactivates all other universal grammars. The value is one of:

• "all" - make all universal grammars active

• "none" - deactivate all universal grammars

• Space-separated list of the universal grammar names - make the specified
grammars active; deactivate all other universal grammars.

The predefined universal grammars are "help", "exit", "cancel" and
"goback". You can define additional universal grammars by setting the
universals property in <grammar> elements.

The default value for VoiceXML 1.0 applications is "all". When the vxml tag’s
version attribute equals 2.0, the default value is "none".

The following <property> element deactivates the "help" grammar and activates
the other predefined universal grammars:

<property
name="universals"
value="exit cancel goback"/>

Speech Errors

Extension. The following properties are BeVocal extensions for limiting the number
of speech errors that can occur:

• bevocal.maxdialogerrors
• bevocal.maxerrors

A speech error is either a recognition errors, which normally results in a no-match
event, or a time-out while waiting for user input, which normally results in a no-input
event.

bevocal.maxdialogerrors

Extension. The value of the bevocal.maxdialogerrors property is the
maximum number of speech errors that can occur within a particular execution of a
dialog.

The default value is 0, which means no limit on the number of errors.

If you set the bevocal.maxdialogerrors property to 5, then on the 5th error in a
particular form, an error.bevocal.maxdialogerrors_exceeded event is
thrown (instead of a no-match or no-input event).

bevocal.maxerrors

Extension. The value of the bevocal.maxerrors property is the maximum
number of speech errors that can occur during the entire call.

The default value is 0, which means no limit on the number of errors.

If you set the bevocal.maxerrors property to 10, then on the 10th error in the
call, an error.bevocal.maxerrors_exceeded event is thrown (instead of a
no-match or no-input event).

210 VOICEXML REFERENCE

PROPERTY REFERENCE

Go Back Facility

Experimental Extension. The following property controls the use of the go-back
facility:

• bevocal.goback
• bevocal.mingoback

Note: The go-back facility is an experimental extension to the BeVocal VoiceXML 1.0
platform.See “Go-Back Facility” on page 43.

bevocal.goback

Extension. The bevocal.goback property specifies whether the parent element is
a legal go-back destination. Set this property to "true" to make the parent element
a legal go-back destination; set it to "false" to disallow going back to the parent
element.

The default value is "true".

You can set this property to "false" in a form to disable the go-back facility in that
form. You can set it to "false" in a document to disable the go-back facility in that
entire document.

bevocal.mingoback

Extension. The value of the bevocal.mingoback property is the minimum size of
the go-back stack. The interpreter keeps at least this many entries on the stack,
except at the beginning of the call when fewer steps have been executed, and after
the user has said “go back” so many consecutive times that the stack has been
depleted.

The default value is 0, meaning that the go-back stack is always empty and the
go-back facility is effectively disabled.

VOICEXML REFERENCE 211

8 Variable Reference

This chapter describes variables defined by VoiceXML. Session variables are
available throughout the application; event-related variables are available in event
handlers only.

Session Variables

The execution environment sets some session variables that you can access from
within executable content:

• session.bevocal.timeincall

• session.bevocal.version

• session.iidigits

• session.telephone.ani

• session.telephone.dnis

• session.uui

session.bevocal.timeincall

Extension. The number of milliseconds since the beginning of this call.

session.bevocal.version

Extension. The version number of the VoiceXML interpreter (for example, "1.2.3").

session.iidigits

Information Indicator Digits

The session.iidigits variable is set to information about the caller’s location
(pay phone, etc.), when available. Complete list available in “Local Exchange
Routing Guide” published by Telecordia.

session.telephone.ani

Automatic Number Identification

The session.telephone.ani variable is set to the caller’s telephone number,
when available.

session.telephone.dnis

Dialed Number Identification Service

The session.telephone.dnis variable is set to the number the caller dialed,
when available.

212 VOICEXML REFERENCE

VARIABLE REFERENCE

session.uui

User-to-User Information

The session.uui variable is set to information from ISDN call setup, when
available.

Event-Related Variables

The following variables are set whenever an event is thrown:

• _event
• _message

Both these variables are extensions to the BeVocal VoiceXML 1.0 platform.

_event

Extension. Within the anonymous scope of an event handler, the JavaScript variable
_event is set to the name of the event that was thrown. For example:

<error>
<prompt>event is <value expr="_event"/></prompt>

</error>

If the event is "error.badfetch.http.500", this handler will say, “event is
error.badfetch.http.500.”

_message

Extension. Within the anonymous scope of an event handler, the JavaScript variable
_message is set to the message string that provides additional context about the
event that was thrown. If no message was supplied when the event was thrown, this
variable has the value "undefined".

VOICEXML REFERENCE 213

9 Function Reference

This chapter describes built-in JavaScript functions that are available to BeVocal
VoiceXML applications. All such functions are extensions to the VoiceXML
specification.

bevocal.getProperty

Extension. Gets the value of a VoiceXML property.

Syntax

bevocal.getProperty(String name)

Parameters

name - The name of the property.

Returns

The value of the specified property in the current scope.

bevocal.log

Extension. Writes a message to the BeVocal Café website.

Syntax

bevocal.log(String message)

Parameters

message - The message to be written to the website.

Description

The log function writes the specified message to the BeVocal Café call log, which
you can view on the Café website. This function performs the same operation as a
<log> VoiceXML element with no label or expr attribute.

214 VOICEXML REFERENCE

FUNCTION REFERENCE

	VoiceXML Reference
	Table of Contents
	Preface
	Audience
	Conventions
	How to Use This Guide
	References

	1 Getting Started
	VoiceXML
	Tags and Elements
	Simple Example
	Environment
	Documents
	Applications
	Dialogs
	Properties
	Grammars
	Events
	Links
	Procedural Logic

	User Interaction
	Flow of Execution
	Explicit Transition
	Recognition-Triggered Transition
	Subdialogs

	2 Forms
	Form Items
	Form Item Variables
	Execution of a Form
	User Interaction

	3 Event Handling
	Predefined Events
	Default Error Handlers
	Application-Defined Event Handlers
	Events in Subdialogs

	Throwing Events
	Application-Defined Events
	4 Fetching Resources
	Fetch Policies and Properties
	Cached Files
	Using Cached Files
	Fetch Optimization
	Timeouts
	Background Audio

	Fetch Attributes
	caching
	fetchaudio
	fetchhint
	fetchtimeout
	maxage

	maxstale
	5 Go-Back Facility
	Retracting User Responses
	Go-Back Stack
	Stack Entries
	Setting Stack Size

	Go-Back Destinations
	Menus
	Mixed-Initiative Forms
	Field Items
	Controlling Go-Back Behavior
	Suppressing Retraction
	Customizing Go-Back

	Activating and Deactivating Go-Back
	Using the Go-Back Facility
	Setting the Stack Size
	Using Blocks
	Using Subdialogs
	Using Variables

	6 Tag Reference
	<assign>
	<audio>
	<block>
	<break>
	<catch>
	<choice>
	<clear>
	<data>
	<debug>
	<disconnect>
	<div>
	<dtmf>
	<else>
	<elseif>
	<emp>
	<enumerate>
	<error>
	<exit>
	<field>
	<filled>
	<form>
	<goto>
	<grammar>
	<help>
	<if>
	<initial>
	<link>
	<log>
	<menu>
	<meta>
	<noinput>
	<nomatch>
	<object>
	<option>
	<param>
	<prompt>
	<property>
	<pros>
	<record>
	<reprompt>
	<rethrow>
	<return>
	<say-as>
	<sayas>
	<script>
	<send>
	<subdialog>
	<submit>
	<throw>
	<transfer>
	<value>
	<var>
	<vxml>

	7 Property Reference
	Prompts
	bargein
	hotword
	timeout

	Input Modes
	inputmodes

	Speech Recognition
	completetimeout
	confidencelevel
	incompletetimeout
	sensitivity
	speedvsaccuracy

	DTMF Recognition
	interdigittimeout
	termchar
	termtimeout
	Background Audio
	fetchaudio
	fetchaudiodelay
	fetchaudiominimum

	Fetching
	audiofetchhint
	audiomaxage
	audiomaxstale

	caching
	datafetchhint
	datamaxage
	datamaxstale

	documentfetchhint
	documentmaxage
	documentmaxstale
	fetchtimeout
	grammarfetchhint
	grammarmaxage
	grammarmaxstale
	objectfetchhint

	objectmaxage
	objectmaxstale
	scriptfetchhint

	scriptmaxage
	scriptmaxstale
	File Expiration Time
	Universal Grammars
	universals

	Speech Errors
	bevocal.maxdialogerrors
	bevocal.maxerrors

	Go Back Facility
	bevocal.goback
	bevocal.mingoback

	8 Variable Reference
	Session Variables
	session.bevocal.timeincall
	session.bevocal.version
	session.iidigits
	session.telephone.ani
	session.telephone.dnis
	session.uui

	Event-Related Variables
	_event
	_message

	9 Function Reference
	bevocal.getProperty
	bevocal.log

